Math 3070/6070 Introduction to Probability
Mon/Wed/Fri 9:00am - 9:50am
Instructor: Dr. Xiang Ji, xji4d@tulane.edu

Lecture 1:Aug 19

Today

e Introduction
e Introduce yourself

e Course logistics

What is this course about?

This course will provide a calculus-based introduction to probability theory. Material cov-
ered will include fundamental axioms of probability, combinatorics, discrete and continuous
random variables, multivariate distributions, expectation, and limit theorems, generally fol-
lowing Chapters 1-5 of the textbook. This course is a critical prerequisite for more advanced
work in statistical theory and analysis.

Prerequisite

e Calculus

Why learn probability
e The subject of probability theory is the foundation upon which all of statistics is built.
e [t provides you a tool to model
— populations
— experiments
— almost anything else that could be considered a random phenomenon
— example topics in Data Analysis course

e Through these models, statisticians are able to draw inferences about populations based
on examination of only a part of the whole.

e A must have for any Data Scientists.


https://tulane-math-7360-2021.github.io/schedule/schedule.html

What this course WILL NOT do for you
It will not help you:

Beat the casino at blackjack (although it may convince you that it is better not to
gamble, or that a casino is a great business).

Answer your friends’ silly questions such as “What are the chances it will rain tomor-
row?” (although it might make you think of ways that you might model and compute
it).

Syllabus

Check course website frequently for updates and announcements.

https://tulane-math-3070-2024.github.io/

HW submission

Students are required to submit hand-written homework in recitations to the TA. Homework
assignments are expected every two weeks with 4-5 problems at a time.

Year 2023 comments

Your experience in this course:

Professor Ji is awesome

/

There were a few times where I felt like Professor Ji’'s comments were a bit condescend-
ing. There were times that he would expect more from us to show proofs etc. and he
would give us more time because he would assume that we were not capable enough
to finish these proofs. He would then chuckle to himself, which felt condescending and
really unmotivated me to go to more classes. I think there were a few instances where
we also called out specific students in the class, which definitely humiliated them, but
also made me uncomfortable.

Professor Ji is a good lecturer, in my opinion. I heard many complaints that he just
reads off of a pdf, but I feel his pdf is well-organized, meaning that the lecture is both
easy to understand and easy to review.

Zoom option is nice.

Classes consist of him reading out of a textbook that is already difficult to understand
just by reading. Very little is added to help you learn the material.

It was okay at best. I did just as well on the midterm by joining the Zoom in contrast
to going to class as I left the class confused 99% of the time. I taught the material to
myself because Professor Ji teaches on a pdf. Managed to get a good grade because |


https://tulane-math-3070-2024.github.io/

was decent at memorizing and wrote the right things on my test cheat sheet. Ask me
in a month, and I will be unable to recall anything from this class.

Professor Ji, despite your best efforts to scare everyone away from taking this class
you clearly do want us to succeeded, which I appriciate. However you could really
improve the lecture time. I think that if you actually want people to come to class,
you should not allow zoom. I think making attendance mandatory did not work, it just
encouraged people to log into zoom. I think that if you would like people to engage
more you should find a way to teach that is better than projecting a pdf. I understand
that you loath writing, but reading a projected pdf is an incredibly dull way to be
presented information. Even slides would be better. Writing would absolutely be the
best. I think that if you want people to actually try the examples in class, you should
provide clearer problems. The way you do it now is often confusing. You will show
us about half of a proof or a theorem that isnt just an inequality and then say ”finish
this”. On more than one occasion, I have found myself spending most of the two-three
minutes you gave us to solve the problem just trying to figure out what you were
asking. Finally, I think that you could foster a better learning enviroment. By this I
mean activly encouraging questions and not laughing at your students when they ask
you questions that are obvious to you. I know you are not doing this out of judgment
but it does not feel great to be laughed for not understanding what you meant when
you explained something the first time. Beyond this, I am a student who will ask
questions no matter how to stupid I look because I think there is no other way to
learn. However, I bet many other students would ask more questions if you responded
in a more encouraging way.

nice professor

Teaching from pre-written notes rather than writing things out on the board is fine,
especially since he said that was his style at the beginning of the semester. My only
gripe would be that the tests were more about reciting definitions rather than applying
what we learned to different problems.

The topics in this course are pretty advanced, and I didn’t understand the motivation
behind a lot of it. However, the course really helped me understand where commonly
used probability models come from, and that was interesting. I also really appreciated
the zoom option that Dr. Ji provided for lecture, and he really seems to care about his
performance as a professor. He often asked for feedback from students, and provided
us the opportunity to vote on syllabus changes and class policies. He also wants his
students to do well. The tests were reasonable given the course content and structure,
and Dr. Ji is a lenient grader. That being said, I generally did not enjoy this course.
There was so much material with extremely involved derivations and proofs that seemed
unnecessarily difficult. Lectures were quite boring, and the homework assignments
were really long and difficult. Sometimes it felt that Dr. Ji thought the material in
this course was simple or easy, which it most definitely was not. That can be pretty
discouraging for students who are feeling lost or stuck. Generally speaking though,
this course was a good option to fulfill the elective requirement for my math minor and
I am glad that I took it.



strongest aspects of this course

/

I really liked the way that the exams were organized because they were very straight-
forward and directly linked to what we had previously learned through the homework,
classwork, etc. 1 also really appreciated Professor Ji’s understanding to bring a one
page cheatsheet, because I personally feel like memorizing a bunch of formulas is not
going to help someone internalize the learning and is futile in the long-run. I think the
concept of applying what you learned was a key component throughout this course,
and I really liked that.

I thought that the homework was very helpful, and I actually really liked the lecture
style - I don’t need the lecturer to write out each theorem or definition; it’s definitely
enough that Dr. Ji writes out the details of proofs and works out examples on the
board.

Exams very representative

He went through the proofs in class. Didn’t understand them but at least we were
exposed to them. He also was super up-to-date with posting and updating class notes
which was very convenient.

I think the way that I truly learned the content of this class was sitting down by
myself in the library with the lecture note. They did provide a comprehensive list
of everything that we covered. Additionally, the exams reflected what we learned in
class and while they were difficult, professor Ji was incredibly forgiving while grading.
Thank you for being a kind grader.

This is the best course I have ever taken. Textbook is awesome. Prof. Ji illustrate
examples on the whiteboard very clearly. In particular, I enjoy it on zoom very much!

He gives a clear roadmap of how to perform well in the class.

The tests, especially the take home final, and the virtual option for lecture were the
strongest aspects of this course.

RateMyProfessor

(5.0 Quality / 3.0 Difficulty) Very nice and caring professor. Course material is not
easy but he grades tests generously.

(5.0 Quality / 3.0 Difficulty) Great professor. Very easy grader. Thinks he’s really
funny (he is funny, but his humor isn’t for everyone). I learned a little in this class,
but it was a manageable course.



Year 2022 comments
Your experience in this course:

e Exactly what I was looking for in a probability course - I got a really good grasp on
the theory and this math has already come in useful in other areas and fields that I'm
studying. Glad I took this class, and I appreciate the tests being more accessible and
spaced out to provide less pressure - highly recommend.

e [ really appreciate the lecture shift that Prof. Xiang Ji had after our midterm survey.
He took suggestions seriously and dramatically improved how the content was presented
to our class’s needs. Having the opportunity to present and listen to classmates on
related statistical topics was also fun and rewarding.

e Absolutely stupendous course. Fabulous structure, even more fabulous professor.

e Lectures were pretty disengaging. I would’ve rather had lecture notes written out to
us rather than being read to us. Presentation extra credit opportunities were nice.
Would’ve liked more communication and collaboration between TA and teacher.

e Once the lecture structure changed after midterms, I felt I learned much more during
lectures. I think that the concepts and theories were explained clearly in class. I
appreciate the generosity Professor Ji showed when grading exams, but I think that
receiving more detailed feedback would have helped me learn the material better. The
exams felt more like a test of our ability to make a formula sheet than a test of our
understanding of course material. While this was nice in terms of my grade, I don’t
think this helped me with my understanding of the material. The recitations often
felt disconnected from the course material because we did practice with numerical
applications and calculations instead of theory. Overall I feel prepared for the second
half of this course next semester.

e [ felt the course provided me with very little context for why we were learning about the
things we were learning. For example, now I know about a lot of different distributions
and their moment generating functions, but I have no idea when I might need to use
a Gamma distribution or Poisson. Additionally, I did not find the textbook to be a
particularly helpful resource. There also seemed to be little communication between
the professor and TA, so the activities we did in recitation weren’t always relevant to
what we were doing in the class.

e This course and professor were great. I got introduced to an entirely new facet of
mathematics and it excited me for my major. Professor X was great and fostered a
great learning environment in the classroom.

e [ appreciate the professor’s willingness to adjust his teaching style to include more
written-out derivations. I would have preferred not to have the 10-minute presentations
in class on Fridays. I felt like especially at the beginning of the semester most of the
content in the presentations was more complex than what we had learned and took
class time away from the material. I think it would have been helpful for the TA and
Professor to communicate about the level of instruction of the course. It was hard to



understand where 1 stood from a knowledge perspective when the level of difficulty
ranged so greatly from homework, quizzes, worksheets, and lectures. I understand
that this class is a probability theory class, however, I think it would be helpful for
math majors interested in applied math to have some way to learn more about the
applications of probability since the Stats for scientists does not count toward the
major.

Wonderful experience! I learned a tremendous amount, and always left class wanting
to know more. This course did not shy away from difficulty and I could not have
appreciated it more. Far too often professors dumb down the material in order to
cater to the students. Not this class, we learned intense probability theory and I could
not be happier with it. I look forward to continuing my studies next semester with
Statistical Inference. The rigor and complexity of the course demanded respect and, if
given, the knowledge learned is powerful.

Professor was good, but I think the subject matter was oftentimes too confusing

The only reasons why I personally did not like the course is firstly because I do not like
the subject matter and secondly, I do not like how the material was organized. I do
not learn math the best when it is purely based off lecture notes. I did notice that the
professor was trying to write more on the board during lectures which I did appreciate.

I appreciate that Professor Ji mid-semester began to workout problems in class on the
whiteboard as that kept me more engaged. Sometimes it was hard to follow the work
on the board however as the steps didn’t seem to be organized (they looked like they
were written all over the place). I think it would be more easy to follow if the notes
on the whiteboard were more organized linearly. Also, we only did this like once, but
I think it could be a good idea to also give students problems and have them come
up to the whiteboard and solve them (maybe for bonus points, doesn’t have to be) as
that is another way to make class more interactive. I also liked having a practice test
as it always nice to get more practice.

Class sessions were a little slow paced and repetitive for me. However, towards the end
as the Professor took some feedback from students and started writing out equations
on the board it was easier to follow along and I was more actively learning. I think
the weekly presentations were nice but took away a chunk of class time that could’ve
prevented us from getting behind. The weekly reviews were really helpful and I think
those are great for Fridays. Our Professor, Dr. Ji, was super accommodating and very
adaptive towards creating the best learning environment for students. I appreciated
the mid-semester surveys and his changes based off that immensely, and his efforts to
supplement our grades with bonus presentations (I just think they could be shorter or
maybe uploaded on a discussion post, rather than take up 1 of every 3 classes). I liked
that we had a class notes document, rather than a textbook, and this also made the
class very accessible when I couldn’t be there in person.

Teaching improved significantly through the semester, he was open to feedback so that
helped some. Lectures were still almost entirely him reading off of a pdf though, which
did not teach me much



strongest aspects of this course

Very good in-depth class, useful theory knowledge and strong lectures.

The strongest aspect of this course is how it provides a very good background which
is needed for future statistics courses.

Loved the professor, absolutely no complaints. Promote Xiang Ji
Lecture notes helpful. Loved the TA and our lab sessions.

I really appreciated that Professor Ji asked for student feedback in the middle of the
semester and adjusted the lectures based on the results. Once we started doing more
derivations on the board, I was able to understand them better.

I love you as a person, but it is seriously hard to digest anything you say in class.
Reading directly from the textbook is not teaching, it is just reading. The tests do not
test us on our knowledge of the material AT ALL. They simply did you write down
the right thing on your cheat sheet.

The professor and TA were very flexible when it was clear that the class didn’t under-
stand something, and were always open for feedback.

I really enjoyed having the lecture notes typed and uploaded ahead of class. This
allowed me to add to these notes and not have to get a notetaker. I also enjoyed
having a notes sheet for the exams especially since there are so many formulas and
distributions.

The rigor and complexity of the course is the strongest aspect. Both Professor Zhao
and Professor Ji made the material approachable and were always happy to explain
and explain again the difficult concepts and proofs. I am excited to take Statistical
Inference for the following semester. Additionally, the course has changed my way of
thinking when assessing probabilities in all aspects of life, and there have been many
instances over the semester when the knowledge imparted to me has been of service.

The professor made himself available which I noticed and appreciated. I liked him as
a person a lot and I noticed his deep knowledge on the topic.

Switching to writing on the whiteboard vs pure lecture from typed notes. Enjoyed
our bonus presentations on various math topics as it opened my eyes to how versatile
statistics can be.

I listed those above. But the professors attitude and flexibility, and use of technology
to sum it up.

professor was open to student feedback which was helpful

I liked the presentations a lot. They were a good change of pace and way to understand
how this is all applied



RateMyProfessor

e (4.0 Quality / 2.0 Difficulty) Dr Ji has a dry wit and is receptive to student feedback.
He is a generous grader and offered an opportunity for generous extra credit. For the
tests, he allowed a cheat sheet, and the final was take-home. I also think the tests were
easy compared to how complicated they could have been. Beware the class is super
theory-based similar to analysis.

e (4.0 Quality / 3.0 Difficulty) At the start of the semester I struggled with Dr. Ji’s
lecturing style, but after the midterm he asked for our feedback and made adjustments
to his class so it was easier to follow his lessons. He didn’t always explain things in
great detail the first time, but if you ask questions he is always willing to clarify. Exams
are also graded generously.

e (3.0 Quality / 3.0 Difficulty) Lectures are based off a pdf document which helps when
you need to study, but can be terribly difficult to pay attention to in class. Tests
account for about 65% of your grade but he goes pretty easy on the grading.

e (2.0 Quality / 2.0 Difficulty) Don’t take this class if you're actually trying to learn the
class content. I've been in here a whole semester and genuinely cannot tell you one
thing I have retained. Does not communicate with the TA so recitation is not helpful
either. Although, homework is graded for completion and quizzes are easy so at least
its not a hard grade.

e (4.0 Quality / 5.0 Difficulty) Prof. Xi is hardcore. 3070 is definitely a theory-heavy
class for people who really want to get into the underlying technical parts of probability,
but if you go into it with that mindset it’s really well structured and informative. Book
is useful, but you have to be serious and commit time/effort into this class to do well.



Lecture 2: Aug 21

Last time
e Introduction
e Introduce yourself

e Course logistics

Today
e Set theory (1.1)
e Axiomatic Foundations (1.2)
e Calculus of Probabilities (1.2)
e Conditional Probability (1.3)

Set Theory

One of the main objectives of a statistician is to draw conclusions about a population of
objects by conducting an experiment. The first step in this endeavor is to identify the
possible outcomes or, in statistical terminology, the sample space.

Definition The set, .S, of all possible outcomes of a particular experiment is called the sample
space for the experiment.

Example The sample space of

e tossing a coin just once, contains two outcomes, heads and tails

S = {H,T}

e observing reported SAT scores of randomly selected students at a certain university

S = {200, 210, 220, . . . , 780, 790, 800}

e an experiment where the observation is reaction time to a certain stimulus
S = (07 OO)
Definition An event is any collection of possible outcomes of an experiment, that is , any
subset of S (including S itself).

Let A be an event,

e A is a subset of S,



e event A occurs if the outcome of the experiment is in the set A,

e we generally speak of the probability of an event, rather than a set.
Set operations:

e Containment:

Ac B «— €A = zeB

e Equality:
A=B < AcBand Bc A

e Union: the union of A and B, written as A U B, is the set of elements that belong to
either A or B or both
AuB={x:xe€Aorze B}

e Intersection: the intersection of A and B, written A n B, is the set of elements that
belong to both A and B:

AnB={x:xeAandxe B}.

e Complementation: the complement of A, written A€, is the set of all elements that are
not in A:

A ={x:x ¢ A}

10



Lecture 3: Aug 23

Last time

e Set theory (1.1)

Today
e Set theory (1.1)

e Axiomatic Foundations (1.2)

Theorem For any three events, A, B, and C', defined on a sample space .S,
1. Commutativity
AuB=BuUA,
AnB=BnA;

2. Associativity

3. Distributive Laws

4. DeMorgan’s Laws

We show the proof of An (Bu C) = (An B)u (AnC) in the distributive laws. Caution:
Venn diagrams are helpful in visualization, but they do not constitute a formal proof. To
prove that two sets are equal, we need to show that each set contains the other.

proof:

e An(BuC)c(AnB)u(An(C):
Let z € (An (B u()). By definition of intersection, z € (B u C) that is, either z € B
or x € C. Since x also must be in A, we have that either x € (An B) or x € (A n C);
therefore, x € (An B) u (An C)).

e (AnB)U(AnC)cAn(Bu(O):
Let z € ((An B)u (An C)). This implies that x € (An B) or z € (An C). If
x € (An B), then x is in both A and B. Since x € B, then x € (B u C)and thus
rze (An (BuC)). It follows the same argument when z € (A n C'), we still have
re(An(Bul)).

11



Definition Two events A and B are disjoint (or mutually exclusive) if A n B = . The

events Ay, Ay, ... are pairwise disjoint (or mutually exclusive) it A; n A; = & for all i # j.
Definition If Ay, Ay, ... are pairwise disjoint and U?;A4; = A3 U Ay U --- = S, then the
collection of Ay, As, ... forms a partition of S.

Example The sets A; = [i,i+1),i=0,1,2,... form a partition of [0, ).

12



Lecture 4: Aug 26

Last time

e Set theory (1.1)

Today

e Axiomatic Foundations (1.2)

Basics of Probability Theory

When an experiment is performed, the realization of the experiment is an outcome in the
sample space. If the experiment is performed a number of times, then

e different outcomes may occur each time
e some outcomes may repeat
e the “frequency of occurrence” of an outcome can be thought of as a probability

However, we do not define probabilities in terms of frequencies but instead take the math-
ematically simpler axiomatic approach. The axiomatic approach is not concerned with the
interpretations of probabilities, but is concerned only that the probabilities are defined by a
function satisfying the axioms. Interpretations of the probabilities are quite another matter:

e The “frequency of occurrence” of an event is one example of a particular interpretation
of probability.

e Another possible interpretation is a subjective one, where we can think of the proba-
bility as a belief in the chance of an event occurring.

Axiomatic Foundations

For each event A in the sample space S, we want to associate with A a number between
zero and one that will be called the probability of A, denoted by Pr(A). The domain of Pr
is the set where the arguments of the function Pr(-) are defined. It is natural to define the
domain of Pr as all subsets of S, that is for each A = S, we define Pr(A) as the probability
that A occurs. However, there are some technical difficulties to overcome which requires us
to familiarize with the following.

Definition A collection of subsets of S is called a sigma algebra (or Borel field), denoted by
B, if it satisfies the following three properties:

1. & € B (the empty set is an element of B).
2. If Ae B, then A°€ B (B is closed under complementation).
3. If Ay, Ay, --- € B, then U2, A; € B (B is closed under countable unions).

13



From Property (1) and (2), we see that the empty set and its complement S (since S = J°)
are always in a sigma algebra. In fact, they construct the trivial algebra {5, S} which is the
smallest sigma algebra.

By DeMorgan’s Law, (3) can be replaced by:
3. if Al, A27 st € B, then ﬁ?il Az e B.

This is because:

Example If S is finite or countable (where the elements of S can be put into one to one
correspondence with a subset of the integers), then these technicalities really do not arise,
for we define for a given sample space S,

B = {all subsets of S, including S itself}.

If S has n elements, there are 2" sets in B (why?).[hint: for each element, it is either in or
out of a subset, so 2 choices].

Example Let S = (—0,0), be the real line. Then B is chosen to contain all sets of the
form

[a,b], (a,b], (a,b), and [a,b)

for all real numbers a and b. Also, from the properties of B, it follows that B contains all
sets that can be formed by taking (possibly countably infinite) unions and intersections of
sets of the above varieties.

We now define a probability function.

Definition Given a sample space S and an associated sigma algebra B, a probability function
is a function Pr with domain B that satisfies

1. Pr(A) >0 for all Ae B.
2. Pr(S)=1.
3. If Ay, Ay, - -- € B are pairwise disjoint, then Pr(u¥,A;) = 37, Pr(4,).

The above three properties are usually referred to as the Axioms of Probability (or the
Kolmogorov Axioms, after A. Kolmogorov, one of the fathers of probability theory). Any
function that satisfies the Axioms of Probability is called a probability function.

Example Consider the simple experiment of tossing a fair coin (just once), so S = {H,T}.
A reasonable probability function is the one that assigns equal probabilities to heads and
tails, that is,

Pr({H}) = Pr({T}).

14



Since S = {H} u {T'}, we have , from Axiom 2, Pr({H} u {T'}) = 1. Also, {H} and {T'} are
disjoint, so Pr({H} u {T'}) = Pr({H}) + Pr({T'}). Collectively, we have

Pr({H}) = Pr({T})
Pr({H} U {T}) =1
Pr({H} U {T}) = Pr({H}) + Pr({T})

Therefore, Pr({H}) = Pr({T}) = 3.

Example If S is finite or countable (where the elements of S can be put into 1 — 1 corre-
spondence with a subset of the integers), then these technicalities really do not arise, for we
we define for a given sample space S,

B = {all subsets of S, including S itself}.

If S has n elements, there are 2" sets in B (why?).|[hint: for each element, it is either in or
out of a subset, so 2 choices].

Example Let S = (—o0, ), the real line. Then B is chosen to contain all sets of the form
[a,b], (a,b], (a,b), and [a,b)

for all real numbers a and b. Also, from the properties of B, it follows that B contains all
sets that can be formed by taking (possibly countably infinite) unions and intersections of
sets of the above varieties.

We now define a probability function.

Definition Given a sample space S and an associated sigma algebra B, a probability function
is a function Pr with domain B that satisfies

1. Pr(A) > 0 for all Ae B.
2. Pr(S)=1.
3. If Ay, Ay, - -+ € B are pairwise disjoint, then Pr(u¥ A;) = 7, Pr(4,).

The above three properties are usually referred to as the Axioms of Probability (or the
Kolmogorov Axioms, after A. Kolmogorov, one of the fathers of probability theory). Any
function that satisfies the Axioms of Probability is called a probability function.

15



Lecture 5: Aug 28

Last time

e Axiomatic Foundations (1.2)

Today
e Axiomatic Foundations (1.2)

e Calculus of Probabilities (1.2)

Example Consider the simple experiment of tossing a fair coin (just once), so S = {H,T}.
A reasonable probability function is the one that assigns equal probabilities to heads and
tails, that is,

Pr({H}) = Pr({T}).

Since S = {H} u {T'}, we have , from Axiom 1, Pr({H} u {T'}) = 1. Also, {H} and {T'} are
disjoint, so Pr({H} u {T'}) = Pr({H}) + Pr({T'}). Collectively, we have

Pr({H}) = Pr({T})
Pr({H} U {T}) =1
Pr({H} U {T}) = Pr({H}) + Pr({T})

Therefore, Pr({H}) = Pr({T}) = 3.

Caculus of Probabilities
We start with some fairly self-evident properties of the probability function when applied to
a single event.
Theorem If Pr is a probability function and A is any set in B, then
1. Pr(g¥) = 0, where ¥ is the empty set;
2. Pr(A) < 1;
3. Pr(A°) =1—Pr(A).

proof:

e It’s easy to prove (3) first. Since
— Pr(Au A°) = Pr(S) =1,
— A and A° are disjoint, by axiom (3), Pr(A u A°) = Pr(A) + Pr(A°).
so that Pr(A) + Pr(A¢) = Pr(S) =1

e with (3) proved, (1) is simple. because we know that

16



- Sug=2>_9,
— Sn =, they are disjoint,
so that Pr(&) + Pr(S) = Pr(& u S) = Pr(9).
e now for (2), Pr(A) = 1 — Pr(4°) < 1, by axiom (1).

Formula (2) in the above theorem gives a useful inequality for the probability of an intersec-
tion (Bonferroni’s Inequality):

Pr(An B) = Pr(A) + Pr(B) — 1.

Theorem If Pr is a probability function, then
1. Pr(A4) = >, Pr(A n () for any partition Cy, Cs,...;
2. Pr(u,4;) < 2, Pr(A;) for any sets Ay, As, ...

where (1) is also referred to as “Total probability” and (2) is Boole’s inequality.
proof:
By definition, since C,Cs,... form a partition, we have C; n C; = & for all © # j, and
S = uZ,C;. Therefore,

A=AnS=An(VZ,C)=UZ(An(Cy),
where the last equality follows from the Distributive Law. Since {An C;} n{AnC;} = &
(i.e. An C; and A n C; are disjoint), we have

0
Pr(A) = Pr(u2,(An Cy) = Y [ Pr(An C).
i=1
To establish Boole’s Inequality, we first construct a disjoint collection A}, A%, ..., with the

property that U, Af = U2, A;. We define A} by
where the notation A\B denotes the part of A that does not intersect with B. In other
words, A\B = A n B°. Tt’s easy to see that U A = U!_nftyA;, and we have
0
Pr(uf,4;) = Pr(vZ,AY) = ) Pr(A7)
i=1
where the last equality holds because A} are disjoint. To see this, consider any pair of
Af n Af,i > k, then
Af n Af = {ANOZI A} o {AN (VT A))
= {Az M (U;;llA])c} M {Ak o) (Uf;llA])c}
— {4 (N2} 0 (Ao (o)
= Q.
Lastly, we have Pr(A¥) < Pr(4;).

17



Lecture 6: Aug 30

Last time

e Calculus of Probabilities (1.2)

Today
e 1o class next Monday (Labor day)

Binomial theorem

Conditional Probability (1.3)

Independence (1.3)

Theorem If Pr is a probability function, then
1. Pr(A) =37, Pr(A n C;) for any partition Cy, Cy, .. .;
2. Pr(u,4;) <2, Pr(A;) for any sets Ay, As, .. ..

where (1) is also referred to as “Total probability” and (2) is Boole’s inequality.
proof:
By definition, since C},C%,... form a partition, we have C; n C; = J for all i # j, and
S = u¥,C;. Therefore,

A=AnS=An(VZ,C)=UZ(An(Cy),
where the last equality follows from the Distributive Law. Since {An C;} n{AnC)} = &
(i.e. AnC; and A n C; are disjoint), we have

Pr(A) = Pr(u®,(An () = Z Pr(A n C)).

(2

To establish Boole’s Inequality, we first construct a disjoint collection Aj, A%, ..., with the
property that U, A* = U A;. We define A} by

A = Ay, AF = A\ (UZ14)), i=2,3,..

where the notation A\B denotes the part of A that does not intersect with B. In other
words, A\B = A n B°. It’s easy to see that U2 A¥ = U¥ | A;, and we have

Lr

Pr (U?O:1Ai) = Ui 1A*

18



where the last equality holds because A} are disjoint. To see this, consider any pair of
A¥ n Af i > k, then

Af 0 AL = {ANOZ A 0 {AN (V)1 A4))}
= {A; n (UZ1A)} 0 {Ap 0 (USZ1A))°}
= {Ai n (NZ1AS) } 0 {4k 0 (PEZ1AS)
- .

Lastly, we have Pr(AF) < Pr(A4;).

Conditional Probability

All of the probabilities that we have dealt with thus far have been unconditional probabilities.
A sample space was defined and all probabilities were calculated with respect to that sample
space. In many instances, however, we are in a position to update the sample space based
on new information. In such cases we want to be able to update probability calculations or
to calculate conditional probabilities.

Definition If A and B are events in S, and Pr(B) > 0, then the conditional probability of A
given B, written Pr(A|B), is
Pr(A n B)

PH(AIB) = —p i

Note that B becomes the sample space now: Pr(B|B) = 1.
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Lecture 7: Sept 4

Last time
e Conditional Probability (1.3)

Today
e Conditional Probability (1.3)
e Independence (1.3)

e Random variables

Example Four cards are dealt from the top of a well-shuffled deck. What is the probability
that they are the four aces? What is the probability of getting four aces at the top if knowing
the first card is an ace? (there are in total 52 cards)

solution:

We define two events first. Let A be the event {4 aces on top}, and B be the event {the first

card on top is an ace}. For a well-shuffled deck, all groups of 4 cards are equally likely. For

the 4 aces on top, we have 4! ways of ordering (i.e., permutations of 4 distinct elements where

order matters). For the rest of 52 — 4 = 48 cards, there are 48! permutations (where again
1

order matters). Therefore, the probability of event A is Pr(A) = % = 52.514.!50. o = T

n n
Note, reads “from n choose m” (for m < n) and calculates by = (n#'),m, that
m m m

gives the number of distinct combinations of choosing m elements from n total elements.
Now, let’s calculate Pr(A|B). First of all, A < B, so that we have Pr(A n B) = Pr(A). For

Pr(B), having an ace on top instead of the other 12 kinds, Pr(B) = 5. Then Pr(A|B) =
Pr(AnB) _ Pr(A) 1

Pr(B) ~ Pr(B) ~ 20,825°

Theorem (Bayes’ Rule) Let Ay, As, ... be a partition of the sample space, and let B be any
set. Then, for each i =1,2,...,

Pr(B|A;) Pr(A;)
Pr(A;|B) = > Pr(BJA;) Pr(4;)

proof:
By “Total probability”, we have Pr(B) = Z;OZI Pr(B n A;) which is the denominator. There-

_ Pr(4inB) _ Pr(B|A;) Pr(A:)
fore, PY(A2|B) — T Pr(B) - Z?:l Pr(BnA;) "
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Lecture 8: Sept 6

Last time
e Conditional Probability (1.3)

Today
e HW2 posted
e Independence

e Random variables

Independence
Definition Two events, A and B, are statistically independent if
Pr(A n B) = Pr(A) Pr(B)

Note that independence could have been defined using Bayes’ rule by Pr(A|B) = Pr(A) or
Pr(B|A) = Pr(B) as long as Pr(A) > 0 or Pr(B) > 0. More notation, often statisticians
omit N when writing intersection in a probability function which means Pr(AB) = Pr(A n

B). Sometime, statisticians use comma (,) to replace N inside a probability function too,
Pr(A, B) = Pr(A n B).

Theorem If A and B are independent events, then the following pairs are also independent.

1. A and B¢,

2. A® and B,
3. A° and B°.
proof:
For (1),
Pr(A, B°) = Pr(A) — Pr(A, B)
= Pr(A) — Pr(A) Pr(B)
= Pr(A)(1 — Pr(B))
= Pr(A) Pr(B°)

For (2), we just need to switch A and B.

For (3), we have A° and B are independent, then we can treat A° as A’ and B as B’, then
A’ and B¢ are independent which is A and B¢ are independent.

Alternatively, for (2),

Pr(A¢, B) = Pr(A°|B) Pr(B)
= [1 — Pr(A|B)] Pr(B)
= [1 —Pr(A)] Pr(B)
= Pr(A°) Pr(B).
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And for (3),
Pr(A¢, B¢) = Pr(A°) — Pr(A%, B)
= Pr(A°) — Pr(A°) Pr(B)
= Pr(A°) Pr(B°).

Example Let the sample space S consist of the 3! permutations of the letters a, b, and ¢
along with the three triples of each letter. Thus,

aaa bbb ccc
S = abc bca cbha
acb bac cab

Furthermore, let each element of S have probability %. Define
A; = {i" place in the triple is occupied by a}.

What are the values for Pr(4;),i = 1,2,3? Are they pairwise independent?
solution
It is easy to count that

and 1
PI'(Al, AQ) = PI'(Al, Ag) = PI'(AQ, Ag) = §

so that A;s are pairwise independent.
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Lecture 9: Sept 9

Last time

e Independence

Today

e Random variables
e Distribution Functions

e Types of Random Variables

Definition* A collection of events Ay, ..., A, are mutually independent if for any subcollec-
tion A;,,...,A;,, we have

k
Pr (mleAij) = HPr(Aij).
j=1

Random Variables

In many experiments, it is easier to deal with a summary variable than with the original
probability structure.

Definition A random variable (r.v.) is a function from a sample space S into the real
numbers.

Example In some experiments random variables are implicitly used

Examples of random variables

Experiment Random variable

Toss two dice X = sum of numbers

Toss a coin 25 times X = number of heads in 25 tosses
Apply different amounts of

fertilizer to corn plants X = yield / acre

In defining a random variable, we have also defined a new sample space (the range of the
random variable).

Induced probability function Suppose we have a sample space S = {s1,59,...,8,} with a
probability function Pr defined on the original sample space. We define a random variable
X with range X = {x1,...,x,,}. We can define a probability function Pry on X in the
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following way. We will observe X = z; if an only if the outcome of the random experiment
is an s; € S such that X(s;) = x;. Therefore,

Prx(X = ) = Pr({s; € S : X(s;) = w:}),

defines an induced probability function on X', defined in terms of the original function Pr.

We will write Pr(X = z;) rather than Pry(X = x;) for simplicity. Note on notation: random
variables will always be denoted with uppercase leeters and the realized values of the variable
(or its range) will be denoted by the corresponding lowercase letters.

Example Consider the experiment of tossing a fair coin three times. Define the random
variable X to be the number of heads obtained in the three tosses. A complete enumeration
of the value of X for each point in the sample space is

s HHH HHT HTH THH TTH THT HTT TTT
X(s) 3 2 2 2 1 1 1 0

What is the range of X7 What is the induced probability function Prx?

solution:

The range for the random variable X is X = {0,1,2,3}. Assuming all 8 points in S has
probability %. By simply counting, we see that the induced probability function on X is

T
Prx(X = iL‘)

ol= | O
ooleo | =
ol | DN
col— | QO

So far, we have seen finite S and finite X, and the definition of Pry is straightforward. If X
is uncountable, we define the induced probability function, Prx for anyset A ¢ X,

Pry(X e A) =Pr({se S: X(s) e A}).
This defines a legitimate probability function for which the Kolmogorov Axioms can be

verified.

Distribution Functions

Distribution Functions are used to describe the behavior of a r.v.

Cumulative distribution function

Definition The cumulative distribution function or cdf of a random variable X, denoted by
Fx(z), is defined by
Fx(z) = Prx(X < z), for all z.
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Definition The survival function of a random variable X, is defined by

Sx(z) =1— Fx(x) = Prx(X > z).

Example Consider the experiment of tossing three fair coins, and let X = number of heads
observed. The cdf of X is

0 if—o<x<0
: ifo<z<1
Fx(z) =< % ifl<xr<?2
% if2<xr<3
1 if3<z<w
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Lecture 10: Sept 11

Last time

e Distribution Functions

Today
e Types of Random Variables

Discrete Random Variables

Continuous Random Variables

Counting Techniques

Some properties of the cdf:
Let F(z) be a cdf. Then

I.OLSF(z)<1
2. lim F(z)=0

Tr——00

3. lim F(z) =1

T—00

4. F is nondecreasing: if a < b, then F'(a) < F(b)
5. Fis right-continuous: lim F'(x) = F(b), or lim F(z) = F(b)

z|b r—bt

6. Pr(a < X < B) = F(b) — F(a)

Theorem The function F'(x) is a cdf if and only if the following three conditions hold:
1. lim F(z)=0and lim F(z)=1
T—00

Tr——00
2. F is nondecreasing: if a < b, then F(a) < F(b)
3. F is right-continuous: lim F'(z) = F(b), or lim F(z) = F(b)

xlb r—bt

The cdf does not contain information about the original sample space.

Definition Two random variables X and Y are identically distributed if, for every Borel set
AcR, Pr(XeA) =Pr(Y e A).

Example Toss a fair coin n times. The number of heads and the number of tails have the
same distribution.
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Theorem The following two statements are equivalent:
1. The random variables X and Y are identically distributed.
2. Fx(x) = Fy(x) for every x.

Types of Random Variables
Definition A random variable X can be
e discrete:
— X takes on a finite or countably infinite number of values
— Fx(z) is step-wise constant
e continuous:
— the range of X consists of subsets of the real line
— Fx(z) is continuous.

e mized: Fx(x) is piecewise continuous.

Example A random variable has cdf

-

0 x <0
x/2 0<z<l1

Flz)=4 2/3 1<z<2
11/12 2<z <3
1 3<w

\

Is this a valid cdf? Is it a discrete random variable or continuous random variable or mixed?
solution:
F(z) satisfies the three properties of a cdf that

1. lim F(z)=0and lim F(z) =1
T—00

Tr——00
2. F is nondecreasing: if a < b, then F(a) < F(b)
3. F is right-continuous: lim F'(x) = F(b), or lim F(z) = F(b).

z|b r—bt

Therefore, F'(x) is a valid cdf. The random variable X is a mixed type.
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Lecture 11: Sept 13

Last time

e Types of Random Variables

Today

e Discrete Random Variables

e Continuous Random Variables

Discrete Random Variables

Suppose a random variable X takes only a finite or countable number of values. Let the
sample space of X be S = {x1,2,...}. Then the cdf can be expressed as:

F(z) = > Pr(X = ).

Ti<T

Definition The probability mass function (pmf) of a discrete random variable X is given by

fx(x) =Pr(X =x) for all z.

If the sample space of X is X = {x1,29,...}, then
Example (Geometric probabilities) Suppose we do an experiment that consists of tossing a

coin until a head appears. Let p = probability of a head on any given toss, and define a
random variable X = number of tosses required to get a head. Then for any x = 1,2,.. .,

Pr(X =z) = (1-p)"'p,

since we must get x — 1 tails followed by a head for the event to occur and all trials are
independent. What is the pmf of the above Geometric distribution? What is the cdf?

solution:
We have the pmf

(1—p)*tp forz=1,2,...

0 otherwise.

flz)=Pr(X =2) = {
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For cdf, we have

0 otherwise

:{ FA) 4 f@) 4+ f(lz]) forz>1

) 1-(1=-pl forz>1
0 for x <1

where || denote the floor function that returns the largest integer smaller or equal to z and
we used the summation of a geometric sequence.

Definition The domain of a random variable X is the set of all values of x for which f(z) > 0.
This is also called range, sample space or support.

Properties of the pmf:
1. f(x) > 0 for at most a countable number of values x. For all other values z, f(z) = 0.

2. Let {x1,29,...} denote the domain of X. Then
0
D flr) =1
i=1

An obvious consequence is that f(x) <1 over the domain.
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Lecture 12: Sept 16

Last time

e Discrete Random Variables

Today

e Continuous Random Variables

e Transformations of Random Variables

Example What is the pmf of a deterministic random variable (a constant)?
solution:

1 forx=c

0 otherwise.

f(z) =Pr(X =2) = {
This is equivalent as a constant of value c.

Example In many applications, a formula can be used to represent the pmf of a random

variable. Suppose X can take values 1,2,... with pmf
1 _
fa) =4 7@ forx =1,2,...
0 otherwise.

How would we determine if this is an allowable pmf?
solution:
We show that f(x) satisfies the properties of pmf.

1. f(z) > 0 for a countable number of values x. For all other values z, f(z) = 0.

2. Let {x1,zs,...} denote the domain of X. Then

Continuous Random Variables

Definition A random variable X is continuous if Fx(x) is a continuous function of z.

Definition A random variable X is absolutely continuousif Fx(z) is an absolutely continuous
function of x.
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Definition A function F(z) is absolutely continuous if it can be written
F(z) = J f(x)dx.
—o0

Absolute continuity is stronger than continuity but weaker than differentiability. An example
of an absolutely continuous function is one that is:

e continuous everywhere

e differentiable everywhere, except possibly for a countable number of points.

Definition The probability density function or pdf, fx(x), of a continuous random variable
X is the function that satisfies

Fx(x) = J$ fx(@®)dt  for all x.

Notation: We write X ~ Fx(x) for the expression “X has a distribution given by Fy(x)”
where we read the symbol “~” as “is distributed as”. Similarly, we can write X ~ fx(x)
orX ~ Fx(x),if X and Y have the same distribution, X ~ Y.

Theorem A function fx(z) is a pdf (or pmf) of a random variable X if and only if
1. fx(z) =0 for all z.
2. 7 fx(@x)de =1 (pdf) or Y, fx(z) =1 (pmf).

Example Suppose A > 0, F(z) = 1 — e for > 0 and F(z) = 0 otherwise. Is F(z) a cdf?
What is the associated pdf?

solution:

F(z) satisfies the three properties of cdf

1. lim F(zx)=0and lim F(z) =1
T—00

T——00
2. F is nondecreasing: if a < b, then F(a) < F(b)
3. F is right-continuous: lim F(z) = F(b), or lim F(z) = F(b).

z|b r—bt
F(x) is a cdf. Actually, F(z) is the cdf of exponential distribution.
To get the pdf, we only need to differentiate the cdf.

_ dF(x)
 dx

/()

e ™ for x>0
0 otherwise.

Note
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e If X is a continuous random variable, then f(x) is not the probability that X = z.
In fact, if X is an absolutely continuous random variable with density function f(x),
then Pr(X =z) =0. (Why?)

proof
z+h
Pr(X =z) = }lllil(l) B f(u)du
zflliix(l)F(:c+h) — F(z—h)
= F(z+) — F(z—)
— 0

e Because Pr(X = a) = 0, all the following are equivalent:

Pra< X <b), Prla<X<b) , Prla<X <b) and Pr(a<X <b)

e f(x) can exceed one!
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Lecture 13: Sept 18

Last time

e Continuous Random Variables

Today

e Transformations of Random Variables

Transformations of Random Variables

Theorem If X is a r.v. with sample space X R and cdf Fx(z), then any function of X,
say Y = ¢(X) is also a random variable. The new random variable ¥ has a new sample
space ) = g(X) < R. The objective is to find the cdf Fy-(y) of Y.

Probability mapping: For any set A < Y:
Pr(Y e A) =Pr(g(X) e A)
=Pr({zr e X :g(x) € A})
=Pr(X e g7'(4)),
where we have defined
g HA) ={xe X gx)e A}

Notice that g~*(A) is well defined even if g(-) is not necessarily bijective.

Example (Binomial transformation) A discrete random variable X has a binomial distribu-
tion if its pmf is of the form

fx(z)=Pr(X =2) = <Z>px(1 -p)"F x=0,1,...,n,

where n is a positive integer and 0 < p < 1. Values such as n and p that can be set to differ-
ent values, producing different probability distributions, are called parameters. Consider a
random variable Y = ¢g(X), where g(z) = n —x; thatis, Y = n— X. Here X = {0,1,...,n}
and Y ={y:y=g(x),re X} ={0,1,...,n}. Forany y € Y, n —x = g(xr) = y if and only
if z = n —y. Therefore, g~'(y) = n — y and

)= Y fx@)
(v)

= Ix(n—y)
- (n ﬁ y> prY(1 — p)n—(n—y)

= (Z) (1—p)p".

Therefore, Y also has a binomial distribution, but with parameters n and 1 — p.
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Example (exercise 2.3) Suppose X has the geometric pmf fx(z) = 3(3)%, 2 = 0,1,2,....

Determine the probability distribution of Y = X /(X + 1). Note that here both X and Y
are discrete random variables. To specify the probability distribution of Y, specify its pmf.

Solution:

xr
z+1

Pr(Y =) = Prig 7 =) = Pr(X = 72) = 52

1 2
y/d=y) o =0.2. 2 .
) 7y 72737 Y
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Lecture 14: Sept 20

Last time

e Transformations of Random Variables

Today

e Transformations of Random Variables

Transformations of Random Variables

Theorem Suppose a continuous random variable X has cdf Fx(z), let Y = ¢g(X), and let
X and Y be defined as

={z:f(z)>0} and Y ={y:y=g(x) for some x € X}.
Then,
1. If g is an increasing function on X, Fy(y) = Fx (g '(y)) for y € V.
2. If g is a decreasing function on X, Fy(y) = 1 — Fx(g (y)) fory e V.
Proof: We start with

Fy(y) = Pr(Y <)
= Pr(g(X) <)
1. If g is an increasing function, then g(X ) < y if and only if X < ¢g~'(y). Therefore,
Fy(y) = Pr(g(X) <y) = Pr(X <g7'(y)) = Fx(97'(v))-
2. Similarly, if g is a decreasing funct10n then (X ) <y if and only if X > ¢~ '(y). And
Fy(y) =Pr(g(X) <y) =Pr(X = g7 '(y)) =1 - Fx(9' ().

Theorem Let X have pdf fy(x) and let Y = g(X), where g is a monotone function. Let X
and Y be defined as

={z: f(x)>0} and Y ={y:y=g(x) for some x € X}.

Suppose that fx(x) is continuous on X and that ¢g~!(y) has a continuous derivative on ).
Then the pdf of Y is given by

) I )| ey
frly) = { 0 otherwise.

Proof:
From last theorem, we have the cdf forms Fy(y). Then fy(y) = d%/Fy(y). (finish the proof)
From last theorem, we have

Fyy) = Fx(97'(y)) if g is increasing
v 1— Fx(g'(y)) if g is decreasing.
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We have, by the chain rule,

fy(y) = iFY@) _ { fX(g<1(y))dig Yy) if ¢ is increasing

Y
dy —H( ))di Y(y) if g is decreasing,

where —g ~Y(y) < 0 when g is decreasing such that —%g7!(y) = | 4 5=1(y)].

Example (Square transformation) Suppose X is a continuous random variable. For y > 0,
the cdf of Y = X? is

Fy(y) = Pr(Y <y) = Pr(X* < y) = Pr(—y < X < /).

Because z is continuous, we can drop the equality from the left endpoint and obtain
Fy(y) = Pr(=yy < X < /)
= Pr(X <) - Pr(X < =) = Fx(Vy) = Fx(=/).
The pdf of Y can now be obtained from the cdf by differentiation:

) = LB ()

p
%mm@—&&wn

=7fx(f) 7fX( VY),

where we use the chain rule to differentiate Fix(/y) and Fx(—4/y).

36



Lecture 15: Sept 23

Last time

e Transformations of Random Variables

Today

e One-page one-sided letter-size cheat sheet for midterm 1
e Transformations of Random Variables

e Expected Values

Transformations of Random Variables

Example (Linear transformation) Suppose X is a continuous random variable with pdf

fX(.I) Let
d
Y—a+bXx, Yy
dz

Then g )

I R T
This transformation is often used when X has mean 0 and standard deviation 1. The linear
transformation above creates a random variable Y with a distribution that has the same
shape as that of X but has mean a and variance b

Conversely, if Y has mean a and standard deviation b, then X = (Y — a)/b has mean 0 and
standard deviation 1. This is called sometimes the “Studentized” transformation.

Example (Normal distribution) Let X ~ N(0,1):

The transformation

VY _
Y=putoX, xX=-F
o
yields
y—p 1 1 _w=w?
= —_ = e 202 .
Frly) = fx (=)~ r

More generally, a distribution is a member of the class of location-scale distributions if the
distribution of a linear transformation of a random variable with that distribution has the
same distribution, but with different parameters.
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Example (Square root of an exponential RV) Suppose X ~ exp()), so that

e ™M x>0

0 otherwise

fx(z) = {

and consider the distribution of Y = v/X. The transformation

is one-to-one and has an inverse x = y? with dz/dy = 2y. Thus

r(y) = fx(¥®)2y = 2™, y=0.

This distribution is a particular form of the Rayleigh distribution and is a special case of the

Weibull distribution.

Theorem (Probability integral transformation) Let X have continuous cdf Fy(z) and define
the random variable Y as Y = Fx(X). Then Y is uniformly distributed on (0, 1), that is,

PriY <y)=y,0<y<1.

Before we prove this theorem, we will digress for a moment and look at Fi', the inverse of
the cdf Fy, in some detail. If Fx is strictly increasing, then Fi! is well defined by

Fil(y) =2 = Fx(r)=y.

However, if Fy is constant on some interval, then Fy' is not well defined as Figure 14.1

illustrates. Any x; < = < x5 satisfies Fx(z) =y

F 0 F @
b 1

t —
Sk sk
) —— YE

- -

| | _d
% 2 i 8 —* 9
X =F;'{_v)
a b.

Figure 14.1: Figure 2.1.2. (a) Fx(z) strictly increasing; (b) Fx(x) nondecreasing

This problem is avoided by defining F' );1 for 0 <y <1 by
Fil(y) = inffz : Fx(x) > y}.
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With this definition, for Figure 14.1(b), we have Fi'(y) = ;.
Proof:
For Y = Fx(X), we have, for 0 <y < 1,

(
=Pr(Fy'[Fx(X)] < Fx'(y)) (Fx'is increasing)
(

v (v)) (definition of F)
One application of the probability integral transformation is in the generation of random
samples from a particular distribution. If it is required to generate an observation X from

a population with cdf Fx, we need only generate a uniform random number U, between 0
and 1, and solve for z in the equation Fx(z) = u.

39



Lecture 16: Sept 25

Last time

e Transformations of Random Variables

Today

e One-page one-sided letter-size cheat sheet for midterm 1
e Expected Values

e Moments

Expected Values
Definition The expected value or mean of a random variable g(X), denoted by Eg(X), is

o0

§ g(z)f(z)dx if X is continuous
Eg(X) =4 >
> g(z)Pr(X =) if X is discrete
TeEX

Provided the integral or summation exists.

If we let g(X) = X, then we get

0

§ of(z)dx if X is continuous
EX =< -

> aPr(X =2) if X is discrete

reX

Example (Exponential mean) Suppose X has an ezponential distribution with parameter A,
X ~ Exp(N), that is, it has pdf given by
1
fx(z) = Xe_z/’\, 0<z<ow,\A>0.
Find out £ X.

Solution:

o0

1
EX = Jxxe_x/)‘dx

0
o a0
—z/A + fe—z/Adx
0

= —Xe

0

o0

= Je“/)‘dx
0
A
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Example (Binomial mean) if X has a binomial distribution, X ~ Binomial(n,p), its pmf is
given by

Pr(X =x) = (Z)px(l —p)"F x=0,1,...,n,

where n is a positive integer, 0 < p < 1, and for every fixed pair n and p the pmf sums to 1.
Find out £X.
Solution:

n

EX = g;)x@)px(l —p)" = an w(Z)px(l —p)" "

Using the identity x(Z) = n(”_l), we have

since the last summation must be 1, being the sum over all possible values of a binomial(n —
1,p) pmf.
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Lecture 17: Sept 27

Last time
e Exam 1 covers up to today’s lecture

e Expectations (2.2)

Today
e Expectations (2.2)

e Moments and moment generation function

The process of taking expectations is a linear operation, which means that the expectation
of a linear function of X can be easily evaluated by noting that for any constants a and b,
such that

E(aX +b) =aFEX +b

Theorem Let X be a random variable and let a, b, and ¢ be constants. Then for any
functions ¢; () and go(x) whose expectations exist,

1. E(agi(X) +bg2(X) +¢) =aEg (X) +bEg(X) + c.
2. If g1(z) = 0 for all z, then Fg,(X) = 0.

3. If g1(x) = ga(x) for all x, then Eg(X) = Ega(X).
4. If a < gi(z) < b for all z, then a < Fg(X) <b.

Proof:
We will give details for only the continuous case, the discrete case being similar. By definition

E(aga(X) + bga(X) + ) = j lags(z) + bga(x) + ] fx(2)da
- [an@irx@is + [ b st | efeds

=aFg(X)+bEg(X)+c

The other three properties are proved in a similar manner (shown in class).

Example (Method of indicators) An example of how the above properties are useful. Let
X ~ Binomial(n,p) for n positive integer and 0 < p < 1 (n is the number of independent
identical binary trials and p is the probability of success). We can write

S
1=1
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where [; is the indicator that ' trial is a success (i.e. I; o Bernoulli(p)). We have
El,=1-p+0-(1—p) =p.

Therefore,

EX:Z;EL:;p:np.

Theorem For a non-negative random variable X (i.e., f(z) = 0 for x < 0).
EX — §o (1= F(z))dx, X continuous
Y o(1—F(z)), X discrete, and Sx = {0,1,2,...}
Proof:

We prove the continuous case first,

0 0

f [ — F(z)]da

0




Lecture 18: Oct 7

Last time

e Midterm Exam 1

Today

e Midterm 1 review

e Moments and moment generating function

Moments

Example (Minimizing distance) The expected value of a random variable has another prop-
erty, one that we can think of as relating to the interpretation of FX as a good guess at a
value of X.

Suppose we measure the distance between a random variable X and a constant b by (X —b)?.
The closer b is to X, the smaller this quantity is. We can now determine the value of b that
minimizes F [(X — b)?] and, hence, will provide us with a good predictor of X. (Note that
it does no good to look for a value of b that minimizes (X — b)?, since the answer would
depend on X, making it a useless predictor of X.)

We could proceed with the minimization of E(X — b)? by using calculus, but there is a
simpler method:

E(X -b)?=EX—-EX +EX —b)?
= E[(X - EX) + (EX - b))’
=E(X -EX)’+ (EX —b)?+2E[(X — EX)(EX — )],

where we have expanded the square. Note that £ [(X — EX)(EX —b)] = (EX —b)E(X —
EX) = 0, since EX — b is constant and comes out of the expectation, E(X — FX) =
EX — EX = 0. This means

E(X -b)?=E(X - EX)*+ (EX —b)~

Such that E(X —b)? is minimized at b = EX. And F(X — EX)? is actually the variance of
X (VarX = B(X — EX)?).

The various moments of a distribution are an important class of expectations.

Definition For each integer n, the nth moment of X (or Fx(x)), ul, is
= EX".
The nth central moment of X, p,, is
pn = E(X — p)",
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where p = p) = EX.
Notes:

o 1= EX° =1

e 1/} is the mean, usually denoted by p.
1o = E(X —p)° = 1

® iy =0

e 1y = E(X — EX)? is the variance

o 3 = E(X — EX)3 is related to the skewness.
o 1y = E(X — EX)%is related to the kurtosis.

Definition The wvariance of a random variable X is its second central moment, Var (X) =
E[(X — EX)?]. The positive square root of Var (X) is the standard deviation of X.

The variance gives a measure of the degree of spread of a distribution around its mean.
Figure 29.4 shows a plot of two samples, one sample draws 100 numbers from a normal
distribution with mean 0 and variance 1, N(0,1). The other sample draws 100 numbers
from a normal distribution with mean 0 and variance 100, N (0, 100).

201

true.sd
& .

> - . L ® : " . . 1

e 10

204

2304

20 10 0 10 20

Figure 18.2: Figure 2.1.2. Two samples of 100 numbers drawn from N (0, 1) and N(0, 100).

Example (Exponential variance) Let X have the exponential(A) distribution. We can cal-
culate the variance of X now.
Solution:
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© 1 © 1

= J 2 =e Py — 2f aA—e "y + \?
o A 0o A

= EX? -\

= \?

Theorem If X is a random variable with finite variance, then for any constants a and b,
Var (aX + b) = a*Var (X).

Proof:
From the definition, we have

Var (aX +b) = E[(aX +b) — E(aX +D)]?
= F(aX — aEX)?
= a’B(X — EX)?
= a*Var (X).

It is sometimes to use an alternative formula for the variance, given by
Var (X) = BE(X?) — (EX)?,
which is easily established by

Var (X) = E(X — EX)* = E[X? - 2XEX + (EX)?]
= EX? - 2(EX)* + (EX)?
= EX? - (EX)%
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Lecture 19: Oct 9

Last time

e Moments

Today

e Midterm exam 1 review

Internal midterm evaluation open

Vote for alternative weighting scheme

Moment generating function

Example (Binomial variance) Let X ~ Binomial(n,p), that is ,

n

pe(x = o) = (7)o

T

What is the variance of X7

Solutions:

Method #1:

We want to find FX? first. We use the

EX? = zn: 2 (Z)pm —p)re,

we use the same property 22 (Z) =an (zj) We then have

I
S
<
+
=
VY

S
<
N——
i)
<
£
=
!
=
3
L
<

And now
Var (X) = EX? — (EX)?

= n(n — 1)p* + np — (np)?
= np —np*

=np(l —p).
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Method #2:
Recall that we could write X = > " | I;, where I; " Bernoulli(p). Then

Var (X) = Var (i ]i)

= Z Var (1;) (I;’s are independent)
i=0

= nVar (I;) (I;’s are identically distributed)
= n[E(I?) - (BL)’]

=np—p’]

= np(1 = p).

Definition Let X be a random variable with cdf Fy. The moment generating function (mgf)
of X (or Fx), denoted by Mx(t), is

MX(t) = E@tX,

provided that the expectation exists for ¢ in some neighborhood of 0. That is, there is an
h > 0 such that, for all t in —h <t < h, Ee!* exists. If the expectation does not exist in a
neighborhood of 0, we say that the moment generating function does not exist.

More explicitly, we can write the mgf of X as

Q0
Mx(t) = J e fx(x)dx, if X is continuous,
—a0

or

Mx(t) = Z e Pr(X = z), if X is discrete.

It is easy to see how the mgf generates moments as in the following theorem.
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Lecture 20: Oct 11

Last time
e Presentations

e Moment generating function

Today

e Internal midterm evaluation open
e Moment generating function

e Common Discrete Distributions (Chapter 3)

Definition Let X be a random variable with cdf Fx. The moment generating function (mgf)
of X (or Fx), denoted by Mx(t), is

Mx(t) = Ee'™,

provided that the expectation exists for ¢ in some neighborhood of 0. That is, there is an
h > 0 such that, for all t in —h <t < h, Ee!* exists. If the expectation does not exist in a
neighborhood of 0, we say that the moment generating function does not exist.

More explicitly, we can write the mgf of X as

Q0
Mx(t) = J e fx(x)dx, if X is continuous,

—00
or
Mx(t) = 2 e Pr(X = x), if X is discrete.

T

It is easy to see how the mgf generates moments as in the following theorem.

Theorem If X has mgf Mx(t), then
EX" = M(0),

where we define o
M)(?)(O) = %Mx(t)

t=0

That is, the n® moment is equal to the n'* derivative of Mx(t) evaluated at t = 0.
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Proof:

—00
= B(Xe™)
Therefore,
d
—Mx(t)| =E(Xe™)| =EX.
dt t=0 t=0

Proceeding in an analogous manner, we can establish that

dn
T M t)| = E(X"™)

t=0

t=0

Example (Binomial mgf) Let X ~ Binomial(n,p), then its mgf is

Oe“ (n>p 1—p)
S

et+

[M]=

Mx(t) =

xT

I
M=
S

?
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Lecture 21: Oct 14

Last time
e Internal midterm evaluation open

e Moment generating function

Today

e Moment generating function

e Common Discrete Distributions (Chapter 3)

Theorem Let Fx(z) and Fy(y) be two cdfs all of whose moments exist.

1. If X and Y have bounded support, then Fy(u) = Fy(u) for all u if and only if
EX" = EY" for all integers r =0,1,2,....

2. If the moment generating functions exist and My (t) = My () for all ¢ in some neigh-
borhood of 0, then Fy(u) = Fy(u) for all .

Theorem (Convergence of mgfs) Suppose {X;,7 = 1,2,...} is a sequence of random vari-
ables, each with mgf My, (t). Furthermore, suppose that

lim Mx,(t) = Mx(t), for all ¢ in a neighborhood of 0,

i—00
and Mx(t) is an mgf. Then there is a unique cdf Fx whose moments are determined by
Mx (t) and, for all  where Fx(z) is continuous, we have

lim F,(z) = Fx(z).

1—00

That is, convergence, for |t| < h, of mgfs to an mgf implies convergence of cdfs.

Poisson approximation One approximation that is usually taught in elementary statistics
courses is that binomial probabilities can be approximated by Poisson probabilities. It is
taught that the Poisson approximation is valid “when n is large and np is small”, and rules
of thumb are sometimes given.

The Poisson(\) pmf is given by

—AAx
Pr(sz)ze — r=0,1,2,...,
x!

where A is a positive constant. The approximation states that if X ~ Binomial(n,p) and
Y ~ Poisson()), with A = np, then

Pr(X =z) ~ Pr(Y = x)
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for large n and small np. We now show that the mgf converge, lending credence to this
approximation. Recall that

Mx(t) = [pe' + (1 —p)]".

For the Poisson()) distribution, we can calculate (HW4, exercise 2.33)
My (t) = X1,

and if we define p = \/n, then Mx(t) = [1 + (¢! — 1)\/n]" such that Mx(t) — My(t) as
n — o.

Theorem For any constant a and b, the mgf of the random variable a X + b is given by
MaX+b = ethX(at).

Proof:
By definition,
MaX+b - FE (e(aX-i-b)t)

- F (e(aX)tebt)
_ eth (6(aX)t)
= " My (at).

Common Discrete Distribution
Why parametric models?

e Parametric models or distribution famailies have a specific form but can change accord-
ing to a fixed number of parameters.

e The objective is to model a population. Parametric models are often appropriate in
common situations with similar mechanisms.

e Parametric models have many known and useful properties and are easy to work with.
When fitting a population, only a few parameters need to be estimated: parametric
inference.

e Sometimes one does not want to make parametric assumptions and would rather work
with non-parametric models. But non-parametric models can be infinite dimensional.

e In this course, we emphasize parametric models.
Discrete uniform X has the discrete unifrom(1, N) distribution if X is equally likely to be
one of {1,2,...,N}.

e Sample space: {1,2,..., N}

e pmf:



o cdf:

0 z <0
Fx(z)=Pr(X<z)=1 |#|/N 0<z<N
1 N <zx
e moments: N +1
EX = ;
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Lecture 22: Oct 16

Last time

e Common Discrete Distributions (Chapter 3)

Today

e Common Discrete Distributions (Chapter 3)

Bernoulli Distribution Consider an experiment where outcomes are binary (say, Success or
Failure) and the probability of success is p. Define the following random variable

v — { 1 outcome is success
0 outcome is failure
Then, Y has a Bernoulli Distribution.
e Sample space: {0, 1}.
e pmf: Pr(Y =1) =pand Pr(Y =0) =1 —p. We can write this as:

p(1=p' Y y=0,1
0 othersie

fly) =Pr(Y =y) = {

e what are the cdf, mean and variance?

Binomial Distribution A Binomial(n,p) random variable X is defined as the number of suc-
cesses in n i.i.d. (independent, identically distributed) Bernoulli trials, each with probability
p of success:

X = ZY;, Yi,....Y, i Bernoulli(p)

i=1

e Sample space: {0,1,...,n}
e pmf:
(M)p*(1=p)"* s=0,1,...,n
s) = s
fx(e) { 0 otherwise
e cdf:
n
F — S 1 _ n—s ]. d f
x(x) s;) <S>p (1—p) (no closed form)
e mean:
EX =np
e variance:

Var(X) = np(1 - p)
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Poisson Distribution The Poisson distribution was derived by the French mathematician
Poisson in 1837 as a limiting version of the binomial distribution. The Poisson distribution
is often used to model the number of occurrences in a given time interval. One of the basic
assumptions on which the Poisson distribution is built is that, for small time intervals, the
probability of an arrival is proportional to the length of waiting time. This makes it a
reasonable model for situations such as waiting for a bus, waiting for customers to arrive in

a bank.

The Poisson distribution has a single parameter A, sometimes called the intensity parameter.
A Poisson random variable X, takes values in the nonnegative integers with pmf

e AN

z!

Pr(X =z|)) = , x=01,...

a0 .
To see that Y.~ ) P(X = z|\) = 1, recall the Taylor series expansion of e* = 3, 2-. Thus
i=0

= z!
B i e\
B — (x —1)!
S e—)\)\:p—l
=\
xz_ll (x —1)!
e\
=\
2
=\
Similarly
0 —)\)\x
EX2 _ 26
;)x z!
B i . O
B — (x —1)!
2 e AN 2L e AN
= -
a;(x—l)! ;_2(13—2)'
=\ + \?
So that
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e Sample space: {0, 1, ...}
o pmf: Pr(X =) = <X

x!

o cdf: Fy(z) =" =X

s!
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Lecture 23: Oct 18

Last time

e Common Discrete Distributions (Chapter 3)

Today

e Common Discrete Distributions (Chapter 3)

e Common Continuous Distributions

Hypergeometric Distribution Suppose a population of N entities is made up of two types:
M of the first type and N — M of the second type. Suppose we take a sample of size K. We
wish to know X, the number in the sample of the first type. The probability mass function
of X is given by:

for ¥ = max(0,M — N + K),...,min(M, K).

The sample space is defined so that all binomial coefficients are valid. We must have:
0<zx<K, 0<z<M, O<KK-zxz<N-M

Often K < M and K < N — M so the range becomes 0 < z < K.

Hypergeometric vs Binomial We can show that the limiting form of the hypergeometric pmf
is the binomial pmf

(D)

Pr(s) = ™
M) (N=M)!
si(M—s)! (n—s)|(N—M—n+s)!
N!
n!(N—n)!
n! M! (N—M)!
sl(n—s)! (M—s)! (N—M—n+s)!
N!
(N—n)!
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Note

MU MM —1)(M-2)...(M—s)!
(M —s)! (M — s)!
:Msl1(1_%)...(1—81\_41)]
%:anl(l—%)...(l—n;]l)]
(N —M)! s 1 n—s—1
[(N—M)—(n—s)]!:(N_M) [1<1_N—M)"'<1_ NI

Letting N — o0, M — o0, & — p, we have

In summary, we have

Hypergeometric — Binomial — Poisson

N — o n — oo A=np
M — o p—0
%—»p np — A
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Lecture 24: Oct 21

Last time

e Common Discrete Distributions (Chapter 3)

Today

e Negative binomial distribution

e Common Continuous Distributions
Geometric Distribution Consider a series of iid Bernoulli Trials with p = probability of
success in each trial. Define a random variable X representing the number of trials until

first success. Note X includes the trial at which the success occurs (one parameterization).
Then, X has a geometric distribution.

e Sample space: {1,2,...}

e pmf:
1-p*t z2=1,2,...

otherwise

—Pr(X=x)=4{ P
f(z) =Pr(X =z {o

o cdf:

e Moments:

Memoryless property. Suppose k > 7, then
Pr(X > k|X > i) = Pr(X > k —1)
Proof:

Pr(X > k|X > i) = f;g{i]:)) - ((11:7;))

=(1-—p)" " =Pr(X >k —1)

Example Suppose X is number of years you live, and X follows a geometric distribution,

then
Pr(survive two more years) = Pr(X > current age + 2| X > current age)

= Pr(X > 2)

This model is clearly too simple for human populations (since we do age).
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Negative Binomial Distribution Still in the context of iid Bernoulli trials, define a random
variable corresponding to the number of trials required to have s successes. We say X ~
Negbin(s,p).

Sample space: {s,(s+1),...}

pmf: forx =s,s+1,s+2,...

e cdf: no closed form
e Expectation: EX = s/p.
e Variance: Var(X) = s(1 — p)/p?
Notes
e Why the name? See Casella & Berger p.95.
e X ~ Negbin(1,p) is the same as X ~ Geometric(p)
e Negbin(n,p) is the same as the sum of n Geometric(p) random variables

Other parameterizations The negative binomial distribution is sometimes defined in terms
of the random variable Y = number of failures before the rth success. Then

Sample space: {0,1,2,...}
e pmf

r+y—1\ ,
f(y)=( z )pqy, y=0,12,...

cdf: no closed form

Expectation: EY = r(1—p)/p
Variance: Var(Y) = r(1 — p)/p?

Negarive binomial vs. Poisson The negative binomial distribution is often good for modeling
count data as an alternative to the Poisson. In the previous parameterization, define

)\:M(:)p: "
P r+ A
Then we have
EX =)\
A A A2
Var(X)=—=XN1+-)= X+ —
D T r



For the Poisson we had that the variance equals the mean.

For the negative binomial, the variance is equal to the mean plus a quadratic term. Thus
the negative binomial can capture overdispersion in count data.

In the previous parameterization, the pmf becomes

fy) = <T " z : 1>qu@, N (;!j(Lry—_l)ll)! (r i A)T (T i A>y

Nr(r+1)...(r+y—1) A\
S ()

r

Letting r — oo, we get
)\LB
fla) > —e™

x!
So for large r, the negative binomial can be approximated by a Poisson with parameter

A=r(l=p)/p.
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Lecture 25: Oct 23

Last time

e Common Continuous Distributions

Today

e Common Continuous Distributions

Common continuous distributions

Uniform Distribution A random variable X having a pdf

f(m):{1 for 0 <z <1

0 otherwise

is said to have a uniform distribution over the interval (0, 1).

The cdf is:
” 0 fory<0
F(?J)ZJ flx)de =1 y forO0<y<l1
- 1 fory>1

e Unifrom; Y ~ Ula,b]

e sample space: [a,b]

e pdf:
L fora<y<b
fly) =+ b

) 0 otherwise
o cdf:

y 0 fory <a

F(y):J f(z)dx = = fora<y<b
- 1 for y > b

e moments:

Notes
e The uniform extends to the continuous case the idea of equally likely outcomes.

o If Y ~ UJ0,1], then a + (b—a)Y ~ Ula,b]
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Exponential Distribution Denoted X ~ Exp(\):
e sample space: x =0
e pdf:

e M fory =0
f(z) = { Y

0 otherwise

o cdf:

v 1—e™ forx=0
Fla) = | sy -
—0 0 forx <0

e moments:

E(X)=1/A
Var(X) = 1/\?
Mx(t)=X(A—1t), t<A
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Lecture 26: Oct 25

Last time

e Common Continuous Distributions

Today

e Common Continuous Distributions

Exponential Distribution Denoted X ~ Exzp()\):

e sample space: x = 0

e pdf:
e ™™ fory =0
T) =
/(@) { 0 otherwise
o cdf:
v l—e ™ forz>0
Fl(x =J dy =
(@) 700f(y)y {0 forx <0
e moments:

E(X)=1/A
Var(X) = 1/\*
Mx(t) =XN(A—=1t), t<A
Interpretation The exponential can be derived as the waiting time between Poisson events.

Suppose that the number of events in a unit interval of time follows a Poisson()\) distribution.
Then, let Y be the time until the first event.

Pr(Y > t) = Pr(0 events in [0, ¢])
and the number of events in [0, t] follows a Poisson distribution with parameter At. Therefore,
Pr(Y >t) = e,

The cdf of Y is
Ft)=1-Pr(Y >t)=1—¢e™

and hence the density is f(t) = e .

Alternative parameterization Many books write the density as

%e‘y/e fory =0
0 otherwise

fly) =

so that F(Y) = 6 and Var(Y) = 6?. In this case § = 1/) is called the mean parameter,
while A\ = 1/6 is called the rate parameter.

64



Memoryless property The exponential has a memoryless property, just like the geometric.
Pr(Y > s+ t|Y > t) = Pr(Y > s)

Same interpretation as the geometric for continuous time:

e The probability of an event in a time interval depends only on the length of the interval,
not the absolute time of the interval.

e The underlying Poisson process is stationary: the rate A is constant. (In the geometric
case, the probability, p of getting an event in every discrete time unit is constant).

Shifted exponential Let X ~ Exp(A) and Y = X 4+ v,v € R. Then, Y has the shifted
exponential distribution with pdf:

fly) =

e~ =X for y > v
{ 0 otherwise
Interpretation:

e v > (0: Event is delayed

e v < 0: The news of the event is delayed

Does the shifted expoenential maintain the memoryless property?

Double exponential The double exponential distribution is formed by reflecting an exponen-
tial distribution around zero. It has pdf:

1
f(z) = 5)\6_””', reR

Laplace distribution Suppose X has the above distribution with A = 1. Now let YV =
oX + p, 1 € R (shifting) and o > 0 (scaling). Then Y has the Laplace distribution with pdf:

) = oo (22

EY =pu, Var(Y) =202

with moments

The Laplace distribution provides an alternative to the normal for centered data with fatter
tails but all finite moments.

Normal Distribution Introduced by De Moivre (1667 - 1754) in 1733 as an approximation to
the binomial. Later studied by Laplace and others as part of the Central Limit Theorem.
Gauss derived the normal as a suitable distribution for outcomes that could be thought of
as sums of many small deviations.

e Sample space: R = (—o0, )
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e pdf: For Y ~ N(u,0?),

e 27 — o<y <®©

e cdf: There is no closed form.

e When 4 = 0 and o = 1, the distribution is called standard normal:

P(y) =Pr(Y <y), P(-y)=1-2(y)

e Mean:
EY =pu

e Variance:

Var(Y) = E(Y — p)? = o?

e Higher central moments:

E(Y _ /~L>m _ #7;/2)!07” m is even
0 m is odd
e In particular:
3 = E(Y — p)* = 0(Skewness)
po =B —p)* = 30"

e Moment generating function:

My (t) = exp(ut + 0*t?/2)

Standardization

Shifting and scaling:
Z ~N(0,1) < Y =0Z+pu~ N(u,o?)

Notes
e Normal distribution is useful in many practical settings. E.g. measurement error.

e Plays an important role in sampling distributions in large samples, since the Central
Limit Theorem syas that the sums of independent identically distributed random vari-
ables are approximately normal

e There are many important distributions that can be derived from functions of normal
random variables (e.g. x?, t, F'). We will briefly present the pdf’s and sample spaces
of these distributions.
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Lecture 27: Oct 28

Last time

e Common Continuous Distribution

Today

e Common Continuous Distribution

Standardization v
Y ~ N o?) — Z=-—"_2N(0,1)
g

Shifting and scaling:
Z ~N(0,1) < Y =0Z+pu~ N(u,o?)

Notes
e Normal distribution is useful in many practical settings. E.g. measurement error.

e Plays an important role in sampling distributions in large samples, since the Central
Limit Theorem syas that the sums of independent identically distributed random vari-
ables are approximately normal

e There are many important distributions that can be derived from functions of normal
random variables (e.g. x?, t, F'). We will briefly present the pdf’s and sample spaces
of these distributions.

x? distribution If Z ~ N(0,1), then X = Z2 has the x? distribution with 1 degree of
freedom. More generally, we have the y? distribution with v degrees of freedom with pdf:

(33/2)5716_"”/2
f(z) = ()

where I'(a) is the complete gamma function,

z>0

0

['(a) = Jx“_le_xdx
0

The x?(v) distribution is a special case of the gamma distribution, so it is easier to derive
its properties from the gamma.

Facts about the Gamma function

e ['(a+1)=al(a),a>0
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Lecture 28: Oct 30

Last time

e Common Continuous Distribution

Today

e Common Continuous Distribution

Student’s ¢ and F distributions Y has a ¢, distribution (¢ with v degrees of freedom) if its

pdf can be written as:

- I'[(v+1)/2] 1
Vorl(v/2) (14 y?/v)+D/2’

Y has an F'(vy,v,) distribution if its pdf can be written as:

(01/02)T [(01 + v2)/2] (023 /ve) ">
fly) = L(v1/2)T(v2/2) (1 + vyy/vg) w1+v2)/2” 0<y<w

f(y)

—0 <y <®©

There are many important properties and relationships between these three distributions
(e.g., X2 is the distribution of the sum of the squares of k& independent standard normals).

Gamma distribution Notation: Y ~ Gamma(a, ).
e pdf:

e M (\y)at

f(y)=T7 y=0

where I'(a) is the gamma function,
o0
['(a) = Jx“lemdx
0

e cdf: In general, there is no closed form, unless a is an integer.

e moments:

E(Y)=a/\
Var(Y) = a/N\?

e MGFE:

My (t) = (1 _1t/)\>a, t <46
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Another parameterization
have

e pdf:

e moments:

e MGF:

Notes:

Same as the exponential distribution, we can let § =

ya_le_y/ﬁ

) = =~z

N

EX =ap
Var(X) = af?

1 @ 1
wio - (125)  t<3

e The special case a = 1 corresponds to an exponential(\)

1
N

then we

e The parameter a is known as the shape parameter, since it most influences the peaked-
ness of the distribution.

e The parameter [ is called the scale parameter since most of its influence is on the
spread of the distribution.

e The special case Gamma(a =

distribution with n degrees of freedom.

n/2,\ = 1/2), for integer n, corresponds to the y2

e The gamma distribution can be derived as the sum of a independent exponential(\)

distributions.

69



Lecture 29: Nov 1

Last time

e Common Continuous Distribution

Today

e Common Continuous Distribution

Beta distribution Notation: Y ~ Beta(a,b).
e Sample space: [0, 1]
e pdf:

where B(a,b) is the Beta function,

1

B(a,b) = Jxa_l(l — )" e = Tath)

and I'(a) is the gamma function. Note that if a and b are integers, then B(a,b) can be
calculated in closed form.

e cdf: In general, there is no closed form, except if @ and b are integers.

e moments: a

EY =
a+b

ab
(a+b)%(a+b+1)

The beta distribution is very flexible, and can take a wide variety of shapes by varying
its parameters.

e Special case: Beta(1,1) = U(0,1).
Omitted distributions: Weibull distribution, and Cauchy distribution.

Var(Y) =
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Lecture 30: Nov 4

Last time

e Common Continuous Distribution

Today

e Common Continuous Distribution

e Distribution Families

Location and Scale families

Let Z be a continuous random variable with pdf f(z). Define the class of rvs
Xpo=0Z+pn, peRo>0

Then
1. X, has pdf

ot = 11 (5559

o

E(X)=0E(Z)+p, Var(X)=o0*Var(Z)
3. The variable Z = X, is called the generator and is a member of the class.

Location families and scale families

e The family of pdfs f, ,(x) is called a location-scale family where p is called the location
parameter, and o is called the scale parameter.

e The family of pdfs
fml(x) = f(l’ - N)

with o = 1 is called a location family.
e The family of pdfs
1 . /x
foo@) =1 (%)
o’ \o

with p = 0 is called a scale family.
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Example (Exponential location family) Let f(z) = e ®,2 >0, and f(z) = 0,z < 0. To form
a location family we replace x with = — u to obtain
e~@ x>0

f($|u)={0 <0

B 6_(33_,“) T = W
0 T <l

[

|

|

1
o 1 2 3 4 5 6 1 8 9 10

Figure 3.5.2. Ezponential location densities

Figure 29.3: Figure 3.5.2. Exponential location densities.

As shown in the above graph, the densities are shifted. Now the positive part of the density
starts at p rather than at 0. If X measures time, then y might be restricted to be nonnegative
so that X will be positive with probability 1 for every value of p. In this type of model,
where p denotes a bound on the range of X, p is sometimes called a threshold parameter.

The effect of introducing the scale parameter o is either to stretch (o > 1) or to contract
(0 < 1) the graph of f(x) while still maintaining the same basic shape of the graph. This is
illustrated in the Figure below.

-6 -4 -2 0 2 4 6

Figure 29.4: Figure 3.5.3. Members of the same scale family
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Exponential Families A family of pdfs or pmfs with vector parameter @ is called an ezpo-
nential famaly if it can be expressed as

f(z|0) = h(z)c(8)exp (Zw] ), reScR (1)

Jj=1

where S is not defined in terms of 8, h(zx), ¢(@) = 0 and the functions are just functions of
the parameters specified; i.e. h is free of 8, ¢(0) is free of z, etc...

Examples:
e One-dimensional: Exponential, Poisson
e Two-dimensional: Gaussian

Exponential family parameterizations are unique except for multiplying constant factors.

0?) family of pdfs, where 8 = (i, ). Then

(ks
(o)
T

Example: Gaussian Let f(z|u,0?) be the n

f(z|p,0%) = — exp

Thus
2
Ma) = A= el o) = Lexp (—45)
UJI(M?O-):_L w?(lu’u >_%
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Lecture 31: Nov 6

Last time
e Common Continuous Distribution

e Location Scale Families

Today

e Exponential Family

Exponential Families A family of pdfs or pmfs with vector parameter @ is called an ezpo-
nential famaly if it can be expressed as

k

f(z|0) = h(z)c(O8)exp (Z wj(e)tj(x)> , reScR (2)

j=1

where S is not defined in terms of 6, h(z), ¢(0) = 0 and the functions are just functions of
the parameters specified; i.e. h is free of 8, ¢(0) is free of x, etc...

Examples:
e One-dimensional: Exponential, Poisson
e Two-dimensional: Gaussian

Exponential family parameterizations are unique except for multiplying constant factors.

Example: Gaussian Let f(z|u,0?) be the n(u, 0?) family of pdfs, where @ = (i, o). Then
1 (z — p)?
AN _
f(x|/vbv o ) - \/%0' exp ( 202
1 . % o >z
= xp | —=— |exp | —== + =
N 2o P 202 P 202 o2
Thus
2
W) = 7= el o) = Lexp (—4)
wi(p,0) = =5 wa(p,0) =%

The parameter space is (i, 0?) € R x (0, 00).

Example: Binomial Let f(x|p) be the binomial(n,p), 0 < p < 1 family of pmfs.

- (- Qoles]
~ (M) -re frog (12 ¢]
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Thus,
h(z) = (Z), x=0,....,n w(p) =log <ﬁ>
cp)=(1=p,0<p<1l ti(z)==x

Note that this works when p is considered the parameter, while n is fixed. Also, p cannot
be 0 or 1. Otherwise, the range changes.

More examples The following distributions belong to Exponential families:
e Continuous: exponential, Gaussian, gamma, beta, >

e Discrete: Poisson, geometric, binomial (fixed # trials), negative binomial (fixed #
successes)

The following distributions do not belong to exponential families:

e Continuous: ¢, F, unifrom
For example, X ~ U(0,0), fx(z) = 0" o—pzp

e Discrete: uniform, hypergeometric

Theorem If X is a random variable with pdf or pmf of the form 2, then

k
E < a‘(‘;;fjé)ti()()> - —a%mgc(e))

i=1

"\ ow; (6 02 b 0%w;(0
Var( ae(j )ti(X)> = —6—9]21ogc(9)—E <Z 505 )t,»(X)).

i=1

Although these equations may look formidable, when applied to specific cases they can
work out quite nicely. Their advantage is that we can replace integration or summation by
differentiation, which is often more straightforward.

Example (Normal exponential family) Let f(z|u,0?) be the n(u,o?) family of pdfs, where
0= (u,0),—0 < p<w,0>0. Then

Flalpo?) = ——exp (-2

Define

Then
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and

h(z) =1 for all z;

c(8) = c(01,0;) = exp (—%) , (61,02) € (0,00) x R
1(0) = 0, ty(x) = —2?/2
wo(0) = 0, to(z) = x

Therefore, by the above theorem

g

EX) = —a—%logc(e) = 9—1 =u
0 1, (3)
Var(X) = —ﬁ—eglogc(e) e o
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Lecture 32: Nov 15

Last time

e Midterm 2

Today
e Multiple Random Variables (Chapter 4)

Joint and Marginal Distributions

In previous lectures, we have discussed probability models and computation of probability
for events involving only one random variable. These are called univariate models.

In an experimental situation, it would be very unusual to observe only the value of one
random variable. For example, in an experiment designed to gain information about some
health characteristics of a population of people, the body weights of several people in the
population might be measured. These different weights would be observations on difference
random variables, one for each person measured. Multiple observations could also arise
because several physical characteristics were measured on each person. Thus, we need to
know how to describe and use probability models that deal with more than one random
variable at a time.

Definition: An n-dimensional random vector X = (X7,..., X)) is a function from a sample
space S into R™.

e Each coordinate X; is a random variable.
e The random vector is associated with a probability space (R", B(R"), F).

e For each Borel set B,
Pr{X e B} = Pr{X (B)} (4)

where

X Y(B)={w: X(w) e B}

Example (Bivariate random variable) A fair coin is flipped 3 times. Define the random vector
(X,Y) where X represents the number of heads on the last toss and Y the total number of
heads. Then, the probabilities of various outcomes are given in the following table:

7



Outcome (x,y) Pr(outcome)
(H, H, H) (1, 3) 1/8
(H, T, H), (T, H, H) (1, 2) 2/8
(H, H, T) (0, 2) 1/8
(T, T, H) (1, 1) 1/8
(T, H, T), (H, T, T) (0,1) 2/8
(T, T, T) (0, 0) 1/8

Definition Two random variables X and Y are said to be jointly discrete if there is an
associated joint probability mass function,

fX,Y(fan) = PI"{X = w7Y = y}

which sums to 1 over a finite or possibly countable combinations of z and y for which
.fX,Y(J:ay) > 07 i'e'7

ZfXX(mvy) =1

x7y

From this, one can also obtain the marginal pmfs of X and Y as follows:
fx(@) =Pr(X =z) =) fxy(z,y)
y
fy(y) =Pr(Y =y) = ZfX,Y(xay)
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Lecture 33: Nov 18

Last time

e Midterm exam 2

Today
e Multiple Random Variables (Chapter 4)
Example (Bivariate random variable) A fair coin is flipped 3 times. Define the random vector

(X,Y) where X represents the number of heads on the last toss and Y the total number of
heads. Then, the probabilities of various outcomes are given in the following table:

Outcome (z,y) Pr(outcome)

(H, H, H) (1, 3) 1/8
(H, T, H), (T, 1, H) (1, 2) 2/8

(H, H, T) (0, 2) 1/8

(T, T, H) (1, 1) 1/8
(T,H, T),(H, T, T) (0,1) 2/8

(T, T, T) (0, 0) 1/8

Definition Two random variables X and Y are said to be jointly discrete if there is an
associated joint probability mass function,

fX,Y(x7y> = PI‘{X = JI,Y = y}

which sums to 1 over a finite or possibly countable combinations of x and y for which
fX,Y(may) > 07 i'e'7

Z fX7Y<x7y) =1
Y
From this, one can also obtain the marginal pmfs of X and Y as follows:

fx(@) =Pr(X = z) = > fxy(z,y)
fr(y) =Pr(Y =y) = ZfX,Y(xay)

Example Back to the fair coin example again. From the definition, we can construct the
joint pmf of X and Y:

Y
o 1 2 3
1/8 1/4 1/8 0
0 1/8 1/4 1/8

0
1

X
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The marginal distributions of X and Y are also easy to find. Note: Marginals do not
determine joint pmf.

Bivariate cdfs Whether they are discrete or continuous or some combination of the two, we
can always define the joint cdf. For n = 2, the bivariate cumulative distribution function is

Fxy(z,y) =Pr{X <z,Y <y}
Properties:
o Fxy(
o Fxy(oo,0) =1
o Fxy(—w,y) = Fxy(z,—0) =
o Fxy(—w,—w) =

e [ is non-decreasing and right-continuous in each variable separately.

Joint probabilities  All joint probability statements about X and Y can be answered in terms
of their joint cdf:

PI‘(.CI?1<X<£IT2,y1<Y<y2):
Fxy(x2,y2) + Fxy(z1,11) — Fxy(21,y2) — Fxy(z2,1)
Example
Pr(X >z,Y >y)=1-Fx(z) - Fy(y) + Fxy(z,y)

Note: To ensure that a bivariate function F(x,y) is a proper cdf, it must satisfy all the
properties mentioned above and the rectangular property above.

Marginal distributions From Fxy, we can derive the univariate distribution functions for X
and Y. These are generally called marginal distributions.

Fx(z) =Pr{X <z} =Pr{X <z,Y <0} = Fxy(z,©)
Fy(y) = Pr{Y <y} = Pr{X <o, Y <y} = Fxy(0,y)

Note: Although we can obtain Fx(x) and Fy (y) from the joint cdf, we cannot do the reverse.

Continuous Bivariate RVs The random variables X and Y are said to be jointly continuous
if there exists a function fxy(x,y), such that for any Borel set B of 2-tuples in R?

Pr(X,Y)e B} - | f( | fer sy
z,y)E

The function fx y (z,y) is called the joint probability density function for X and Y. It follows
in this case that

T Y
Fxy(z,y) = J J fxy (s, t)dtds,
—w0 J—0

0*F(x,y)

fX,Y<x7y) = axay
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Lecture 34: Nov 20

Last time

e Multiple Random Variables (Chapter 4)

Today

e Course Evaluations
e Conditional Distributions

e Independence

Continuous Bivariate RVs The random variables X and Y are said to be jointly continuous
if there exists a function fxy(x,y), such that for any Borel set B of 2-tuples in R?

Pr(X,Y)e B} - | f(  frr @y

The function fx y (z,y) is called the joint probability density function for X and Y. It follows
in this case that

z Y
FX,Y<:C7Z/) = J J fij(S,t)dtdS,
-0 J—w

O*F(x,y)
fX,Y<x7 Z/) = ax—ay

Properties of the bivariate pdf
o fxy(z,y) =0
o {7 87, fxy(z, y)dady =1

e fxy(z,y) is not a probability, but can be thought of as a relative probability of (X,Y")
falling into a small rectangle located at (z,y):

Pr{ix < X <zx+dr,y <Y <y-+dy} ~ f(r,y)dzxdy

e The marginal probability density functions for X and Y can be obtained as
e 6}
fx(z) = J fxy (@, y)dy
—00

fr(y) = JOO fxy(z,y)dx
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Example 1
Fxy(z,y) = zy 0<z<1,0<y<1

. 621:1)(,5’(Iaiy) _

fxy(z,y) = ~ordy
fx(z) =
fY(y) =

Example 2
FX,Y(:C,y)::E—xlog;E O<z<y<l
Yy
62F1X,Y(:U7y)

Ifxy(x,y) = ~owdy
fx(z) =
fY(y> =

Note: Once we have fx(z) and fy(y), we can obtain Fx(z) and Fy(y) directly. Double
check: Fx(z) = Fxy(z, ).

Conditional Distributions

Conditional Distributions - Discrete Recall if A and B are two events, the probability of A

conditional on B is:
Pr(A, B)

Pr(B)
Defining the events A = {Y = y} and B = {X = x}, it follows that

Pr(A|B) =

Pr(X =z,Y =y)
Pr(X = z)
_ fxv(@y)

fx(z)
= fyix(ylv)

Pr{Y = y|X =2} =

This is called the conditional probability mass function of Y given X.

Example: Discrete Back to the fair coin example. From the joint pmf of X and Y, we can
derive all the conditional pmfs:

Y
o 1 2 3
1/8 1/4 1/8 0
0 1/8 1/4 1/8

0
1

X
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Lecture 35: Nov 22

Last time

e Multiple Random Variables (Chapter 4)

Today
e Course Evaluations (7/33)

e Independence

Conditional Distribution - Continuous If F(z,y) is absolutely continuous, we define the con-
ditional density of X given Y as:

Few(aly) = 2@ 400y 5 g

fr(y)
Example 1
Fxy(x,y) = xy O<z<l O<y<l
fxy(z,y) =1 D<z<l O<y<l
[x(x) =1 0<z<l1
fr(y) =1 O<y<1
fX\Y($|y)=f)}§—E§’)y)=1 O<z<l (0<y<l)
fY|X(y|CII)=f)}§—g’)y)=1 O<y<l (0<z<l)

Note: Here we get that the conditional densities are the same as the marginals. This means
X and Y are independent.

Example 2
Fxy(z,y) =z —zlog 0<z<y<l
fxv(zy) =1/y 0<z<y<l
fx(x) = —logx 0<z<l1
fry) =1 0<y<1
leY(xfy)Zb}i—gsy)zl/y 0<z<y 0<y<1)
frix(ylz) = f)}f(g:’)y) = s TSy<l (0<z<1)

e Y is marginally uniform, but not conditionally uniform.

e X is conditionally uniform, but not marginally uniform.
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Independent Random Variables

Independence The random variable X and Y are said to be independent if for any two Borel
sets A and B,
Pr( X e AYeB)=Pr(XeA)Pr(YeB)

All events defined in terms of X are independent of all events defined in terms of Y.

Using the Kolmogorov axioms of probability, it can be shown that X and Y are independent
if and only if V(z,y) (except possibly for sets of probability 0)

Fxy(v,y) = Fx(v)Fy(y)

or in terms of pmfs (discrete) and pdfs (continuous)

fX,Y(ﬂU,y) = fX(l’)fY(y)

Checking independence

e A necessary condition for independence of X and Y is that their joint pdf/pmf has
positive probability on a rectangular domain.

e If the domain is rectangular, one can try to write the joint pdf/pmf as a product of
functions of x and y only.

Example Two points are selected randomly on a line of length a so as to be on opposite
sides of the mid-point of the line. Find the probability that the distance between them is
less than a/3.

Solution:

Let X be the coordinate of a point selected randomly in [0, a/2] and Y be the coordinate of
a point selected randomly in [a/2,a]. Assume X and Y are independent and uniform over
its interval. The joint density is

fxy(@y) =4/a®>, 0<z<a/2,0/2<y<a

Therefore, the solution is
Pr(Y — X <a/3) =
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Lecture 36: Dec 2

Last time
e Multiple Random Variables (Chapter 4)

Today
e Course Evaluations (8/33)
e Expectation
e Final exam format
— Final exam will be take home
— Open book, open note, not open internet
Final exam will be released on Friday (12/06/2024) right after class
— Final exam due 23:59 pm on Friday 12/13/2024.

— Scan and submit your exam via email with a single pdf file.
— Send your email to both your instructor and your TA.

— Submitted exams should be human-readable to receive non-zero scores.

Example: Buffon's Needle A table is ruled with lines distance 1 unit apart. A needle of
length L < 1 is thrown randomly on the table. What is the probability that the needle
intersects a line?

Solution:

Define two random variables:

e X: distance from low end of the needle to the nearest line above
e (: angle from the vertical to the needle.
By “random”, we assume X and € are independent, and
X ~U(0,1) and 0~ U[-7/2,7/2].

This means that
fxo(x,0)=1/1, 0<z<1,—-7/2<0<m/2

For the needle to intersect a line, we need X < L cos(#).

Expectations of Independent RVs (Theorem 4.2.10) Let X and Y be independent rvs.
e Forany Ac R and B c R,
Pr(Xe A YeB)=Pr(XeA)Pr(YeB)
i.e., the events {X € A} and {Y € B} are independent.
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e Let g(x) be a function only of x and h(y) be a function only of y. Then

E[g(X)h(Y)] = [Eg(X)] [ER(Y)]

Proof:

Example X, Y are independent
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Lecture 37: Dec 4

Last time

e Expectation

Today
e Course Evaluations (9/33)

e Transformations

Bivariate Transformation

Functions of random variables Let (X,Y’) be a bivariate rv with known distributions. Define
(U, V) by
U=g(X,Y), V=g(XY)

Probability mapping For any Borel set B < R?,
Pr[(U,V)e B] =Pr[(X,Y) € A]
where A is the inverse mapping of B, such that

A= {(z,y) e R*: (q1(,y), 92(,y)) € B}.

The inverse is well defined even if the mapping is not bijective.
Example Let gi(z,y) = z, ga(z,y) = 2 + y°.

Discrete RVs Suppose that (X,Y) is a discrete rv, i.e., the pmf is positive on a countable
set A. Then (U, V) is also discrete and takes values on a countable set B. Define

Ao ={(z,y) € A gi(,y) = u, g2, y) = v}

Then
fov(u,o) =Pr(U =u,V =v) = > fxy(zy)

(wyy)eAu,v

Sum of two independent Poissons Let X ~ Poisson(A\), Y ~ Poisson()s), independent,
and define
U=X+Y, V=Y

e (X,Y) takes values in A = {0,1,2,...} x {0,1,2,...}
e (U,V) takes values on B = {(u,v) : v =10,1,2,...,u=v, 0+ 1,0 +2,...}.

e For a particular (u,v), Ay, = {(z,y) e Az +y=u,y =v} = (u—v,u).
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The joint pmf of U and V is

—)\1 u—v —>\2 v
e~ MAY T e AY

fov(u,v) = fxy(u—wv,v) = (u—20)l (v)!

The distribution of U = X + Y is the marginal

fu(u) =

Zu: e_)‘l)\“ v _’\2)\”

= (u—w0)! (v)!

7()\1+)\2) u
€ U U—v\v
u! Zo (v) AT

e—()\l +)\2)

= ()

u:

We obtain that U is Poisson with parameter A = Ay + Ao.

Bivariate Transformations of Continuous RVs Suppose (X,Y) is continuous and the joint
transformation

u:gl(‘ruy>? U:.QQ('I7y)

is one-to-one and differentiable. Define the inverse mapping
x = hi(u,v), y=hs(u,v)

Then
fov(u,v) = fxy (ha(u,v), ha(u,v)) || (u, v)]|

where J(u,v) is the Jacobian of the transformation (z,y) — (u,v) given by

dx o
Juw) = Q@) _ [ Z ]

o(u,v)

Example: Rotation of a bivariate normal vector Let X ~ N(0,1), Y ~ N(0,1), independent.
Define the rotation

U= Xcosf—Ysinb
V = Xsinf + Y cos@

for fixed . Then U ~ N(0,1), V' ~ N(0,1), independent.

Proof:
The range of (X,Y) is R% The range of (U, V) is R?. Need the inverse transformation

X =Ucosf + Vsint
Y = -Usinf + V cost

ox Oz i
R cosf siné
J(u,v)—[a_y @]_[_sine 0080]
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and its determinant is
The joint pdf of (X,Y) is

o) = e e T

The joint pdf of (U, V) is

ief[(ucos9+vsin9)2+(7usin9+vcos€)2]/2 . |1|
2m
ief(u2+v2)/2 o 1 7u2/2 . 1 7v2/2

27 V21 V2w
soU ~ N(0,1), V ~ N(0,1), and U and V are independent.

fov (u,v)

Functions of independent random variables (Theorem 4.3.5) Let X and Y be independent
rvs. Let g : R — R and h : R — R be functions. Then the random variables U = g(X) and
V' = h(Y') are independent.

Sum of two independent rvs Suppose X and Y are independent. What is the distribution
of Z =X + Y7 In general:

Fz(z) =Pr(X +Y < z) =Pr({(z,y) such that x + y < z})

Various approaches:

bivariate transformation method (continuous and discrete)

Discrete convolution

Z Ix(z ZfX ) fy(z — )

r+y=z

Continuous convolution (Section 5.2)

MGF method (continuous and discrete)
Example (Sum of two independent Poissons) Define X, Y to be two independent random
variables having Poisson distributions with parameters \;, ¢ = 1,2. Then:

e MM ez )Y ry =012

fX,Y(may) = 7! y|
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The distribution of S = X +Y is

Sy e MAT em R\

fsls) = x! (s —ax)!

=0
e—(>\1 +X2) S (8

s!

NAT
=0 l’)
e—(A1+X2)

= T()\l + A2)®

Again, S is Poisson with parameter A = A; + As.

Moment generating function (Theorem 4.2.12) Let X and Y be independent rvs with mgfs
Mx () and My (-), respectively. Then the mgf of Z = X + Y is

My (t) = My (t) My (t)

Proof:
My(t) = Fexp(Zt) = E{exp [(X + Y)t]}
= Elexp(Xt)exp(Yt)] = Elexp(Xt)]- Elexp(Yt)]
= Mx (t)My(t)

Corollary: If X and Y are independent and Z = X — Y,

My(t) = M () My (—t)

Example (sum of two independent Poissons) Suppose X ~ Poisson(Ax) and Y ~ Poisson(\y)
and put Z = X +Y. Then, Z ~ Poisson(Ax + Ay). Proof:

Mz (t) = exp [Ax(e" — 1)] exp [Ay (' — 1)]
= exp [(Ax + Ay)(e' = 1)]

Example (sum of two independent normals) Suppose X ~ N(,,07) and Y ~ N(u,,07)
and X and Y are independent and Z = X + Y. Then

Z ~ N(pg + 1y, 02 + 02)

Proof:
_ L 59 1 50
My(t) = exp | put + 20mt exp | pyt + 20yt

1
= exp l(ux + 1y )t + 5(0925 + aj)tQ]
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Example (sum of two independent gammas) Suppose X ~ T'(ay, ) and independently
Y ~ (e, B). Let Z=X+Y. Then Z ~ I'((ay + o), B).

Proof:
1T\ / 1 \%
Mzt = <1—Bt> (1—&)

B 1 Qg +oy
(=)

e If @ =1 we have an exponential with parameter (.

Remember that

o If « = n/2 and 8 = 2, we have a x*(n) (with n d.f.). The above result states that
X2 (n1) + X3 (n2) = X*(n1 + na).

Covariance and Correlation Let X and Y be two random variables with respective means
px, iy and variances 0% > 0 and 0% > 0, all assumed to exist.

e The covariance of X and Y is

Cov(X,Y) = E[(X — px)(Y — py)] = oxy

e The correlation between X and Y is

Cov(X,Y)
\/Var(X)Var(Y)

oxy [(X—,UX) (Y—NY)]
PXy = =F
O0x0y ox Oy

Properties Let ¢ be a constant:

Cor(X,Y) =

also written as

1. Cov(X,X)=Var(X), Cor(X,X)=1

2. Cow(X,Y)=_Cou(Y,X), Cor(X,Y) = Cor(Y, X)
3. Cov(X,c)=0, Cor(X,c)=0

4. Cou(X,Y) = B(XY) — BE(X)E(Y)

5 Let X=X —pux, Y. =Y — puy. Then

Cov(X,Y) =Cov(X.Y.) = E(X.Y.)
Cor(X,Y) = Cor(X.,Y.)

6. Let X = (X — pux)/ox, Y = (Y — py)/oy. Then,

Cor(X,Y) = Cor(X,Y) = Cou(X,Y) = E(XY)
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Independent vs. Uncorrelated

e X and Y are called uncorrelated iff

Cov(X,Y) =0 orequivalently pxy =0

e If X and Y are independent and Cov(X,Y") exists, then Cov(X,Y) = 0.
e If X and Y are uncorrelated, this does not imply that they are independent.

Example X ~ U[-1,1], Y = X% Then Cov(X,Y) = 0 but X,Y are not independent.

Correlation coefficient For any random variables X and Y,
1. -1 <pxy <1
2. |pxy| = 1if and only if Ja # 0 and b such that
Pr(Y =aX +b) = 1.
if pxy = 1 then a > 0, and if pxy = —1, then a < 0.

proof: . o
Let X = (X —ux)/ox, Y = (Y —uy)/oy. Then Cor(X,Y) = E(XY),

1.

0<SEX-Y)?=1+1-2E(XY) = EXY)<1
0SEX+Y)?=1+1+2E(XY) = —-1<E(XY)
2. . )
pxy =1 < Pr(Y =X) =1 = a>0
pxy = —1 «—= Pr(Y ==X)=1 = a<0
Random Samples
Definition The random variables X,...,X,, are called a random sample of size n from

the population f(x) if X1,..., X, are mutually independent and identically distributed (iid)
random variables with the same pdf or pmf f(x).

If Xq,...,X, areiid, then their joint pdf or pmf is

f(an,ooan) = fle) f(x2) . flxa) = [ ] flay)

=1

Statistics Let X,..., X, be a random sample and let T'(z1,...,x,) be a function defined
on R™. Then the random variable Y = T(Xy,..., X,,) is called a statistic. The probability
distribution of Y is called the sampling distribution of Y.

Note: T is only a function of (z1,...,z,), no parameters.
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Examples

sample mean X =+ 3 X
j=1
sample variance S? = - 3 (X; — X)?
j=1
sample standard deviation S = /S?
minimum Xy = min Xj
1<i<n
Properties Let x1,..., 2, be n numbers and define
__1¢ 2 IR —\2
- : _ -
nzx]’ T (2 =)
7j=1 j=1
Then . .
mainZ(xj —a)? = Z:(avJ 7)?
j=1 j=1
(n—1)s* = Z(:Uj —I)? = Zm? — nz?
j=1 j=1
Residuals Lemma: Let Xi,..., X, be a random sample from a population with mean p and

variance o2. Define the residuals R; = X; — X. Then

2

nflo_

n

E(Rz) = 0, VCLT(RZ) =
Cov(R;, X) =0, Cov(R;, R;)

Theorem Let Xy, ..
the mgf of the sample mean is
Mx(t) = [Mx(t/n)]"

Convergence

Convergence in Probability A sequence of random variable
bility to a random variable X, denoted

X, =X

—

if for every € > 0,
lim Pr(|X, — X| <¢) =1

n—ao0

or equivalently
lim Pr(|X, — X|>¢€¢) =0
n—a0

., X, be a random sample from a population with mgf Mx(¢).

—o?/nif i #j

Then

s Xq,..., X, converges in proba-

In other words, X, is more and more likely to be close to X, or less and less likely to be far

from X.
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Example Let X, = X + ¢,, where ¢, ~ N(0,1/n) and X is an arbitrary random variable.
Then, as n — o0,

X, 5 X

Weak law of large numbers (WLLN) Let Y;,..., Y, beiid with common mean p and variance
0?. Then, as n — o,

j=1

Proof:

The proof is quite simple, being a straightforward application of Chebychev’s Inequality. We
have, for every € > 0,

E(Y —p)? Var(yY) o?

Pr(|Y, —p| =€) = Pr(|Y, — u|* = ) < 5 > =-— —~0asn—>w

€ € ne
Convergence in Distribution A sequence of random variables X, ..., X,, converges in distri-
bution to a random variable X, denoted
d
XN i X

if
lim Fy, (z) = Fx(z)

n—00
This is also called convergence in law or weak convergence. In other words, the distribution
of X, is closer and closer to the distribution of X.

Relation between “in distribution” and “in probability” Theorem:

1. Convergence in probability implies convergence in distribution:

X, Ax=Xx,%X

2. Suppose X, % X where X has a degenerate distribution, i.e. Pr{X = a} = 1 for some
a € R. Then,

d P
X,—a= X, >a

Convergence in Distribution via Convergence of Mgfs Theorem: Suppose the mgf M, (t) of Y,,
exists for |t| < h, and the mgf M (t) of Y exists for |[t| < hy < h. Then,

Y, 5Y < lim M,(t) = M(t), [|t|<h

n—0o0

Example Let X, ~ Poisson(\). Then, as A — o,
Xy—A

A
Xa—A

20

<4 N(0,1)

=

94



Central Limit Theorem Let X7, X5, ..., X,, be a sequence of iid random variables whose mgfs
exist in a neighborhood of 0 (that is, My, (t) exists for |t| < h, for some positive h > 0). Let
EX; = p and Var(X;) = 0 > 0. (Both p and o? are finite since the mgf exists) Define

X, =2 > X;. Let G,,(x) denote the cdf of /n(X,, — p)/o. Then, for any z, —00 < z < o0,
=1

o1 2
lim G, (z) = J NS v 2dy;
m

n—0o0

that is, v/n(X, — i) /o has a limiting standard normal distribution, in other words, 1/n(X, —
d

p)/o = N(0,1)

Proof:

Define Y; = (X; — p)/o, and let My (t) denote the common mgf of Y;s, which exists for
|t < oh and My (t) = My, _, () = e"s"Mx(L). Since

Vi) 1y
o \/EZ:1 79
we have,

M (%o (t) = M Sy o

— My (t/vR)
~ ()]

We now expand My (t/4/n) in a Taylor series (power series) around 0.

Z Moy U

Y

where M,(,k)(()) = (dk/dtk)My(t)|t:0. Since the mgfs exist for |[t| < h, the power series
expansion is valid if ¢ < y/noh.

Using the facts that Mx(/) =1, M = 0, and My (2) 1 (by construction, the mean and
variance of Y are 0 and 1), we have

t (t/y/n)?
My(—) =1+ +R
Y(\/ﬁ ) 2! Y(\/ﬁ )
where Ry is the remainder term in the Taylor expansion such that
L Ry(t/y)
N ONDE
Therefore, for any fixed ¢, we can write

t [ [ = o |1 S5 e

1 /t? t "
= 1li 1+ —(— Ry (—
fig |1 (G o )

2
_ 2
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