
Lecture 37: Dec 4

Last time

• Expectation

Today

• Course Evaluations (9/33)

• Transformations

Bivariate Transformation

Functions of random variables Let pX, Y q be a bivariate rv with known distributions. Define
pU, V q by

U “ g1pX, Y q, V “ g2pX, Y q

Probability mapping For any Borel set B Ă R2,

Pr rpU, V q P Bs “ Pr rpX, Y q P As

where A is the inverse mapping of B, such that

A “ tpx, yq P R2 : pg1px, yq, g2px, yqq P Bu.

The inverse is well defined even if the mapping is not bijective.

Example Let g1px, yq “ x, g2px, yq “ x2 ` y2.

Discrete RVs Suppose that pX, Y q is a discrete rv, i.e., the pmf is positive on a countable
set A. Then pU, V q is also discrete and takes values on a countable set B. Define

Au,v “ tpx, yq P A : g1px, yq “ u, g2px, yq “ vu

Then
fUV pu, vq “ PrpU “ u, V “ vq “

ÿ

px,yqPAu,v

fXY px, yq

Sum of two independent Poissons Let X „ Poissonpλ1q, Y „ Poissonpλ2q, independent,
and define

U “ X ` Y, V “ Y

• pX, Y q takes values in A “ t0, 1, 2, . . . u ˆ t0, 1, 2, . . . u

• pU, V q takes values on B “ tpu, vq : v “ 0, 1, 2, . . . , u “ v, v ` 1, v ` 2, . . . u.

• For a particular pu, vq, Auv “ tpx, yq P A : x ` y “ u, y “ vu “ pu ´ v, uq.
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The joint pmf of U and V is

fUV pu, vq “ fXY pu ´ v, vq “
e´λ1λu´v

1

pu ´ vq!

e´λ2λv
2

pvq!

The distribution of U “ X ` Y is the marginal

fUpuq “

u
ÿ

v“0

e´λ1λu´v
1

pu ´ vq!

e´λ2λv
2

pvq!

“
e´pλ1`λ2q

u!

u
ÿ

v“0

ˆ

u

v

˙

λu´v
1 λv

2

“
e´pλ1`λ2q

u!
pλ1 ` λ2q

u

We obtain that U is Poisson with parameter λ “ λ1 ` λ2.

Bivariate Transformations of Continuous RVs Suppose pX, Y q is continuous and the joint
transformation

u “ g1px, yq, v “ g2px, yq

is one-to-one and differentiable. Define the inverse mapping

x “ h1pu, vq, y “ h2pu, vq

Then
fUV pu, vq “ fXY ph1pu, vq, h2pu, vqq ||Jpu, vq||

where Jpu, vq is the Jacobian of the transformation px, yq Ñ pu, vq given by

Jpu, vq “
Bpx, yq

Bpu, vq
“

„

Bx
Bu

Bx
Bv

By
Bu

By
Bv

ȷ

Example: Rotation of a bivariate normal vector Let X „ Np0, 1q, Y „ Np0, 1q, independent.
Define the rotation

U “ X cos θ ´ Y sin θ

V “ X sin θ ` Y cos θ

for fixed θ. Then U „ Np0, 1q, V „ Np0, 1q, independent.

Proof:
The range of pX, Y q is R2. The range of pU, V q is R2. Need the inverse transformation

X “ U cos θ ` V sin θ

Y “ ´U sin θ ` V cos θ

with Jacobian

Jpu, vq “

„

Bx
Bu

Bx
Bv

By
Bu

By
Bv

ȷ

“

„

cos θ sin θ
´ sin θ cos θ

ȷ
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and its determinant is
|Jpu, vq| “ 1.

The joint pdf of pX, Y q is

fXY px, yq “
1

?
2π

e´x2{2
¨

1
?
2π

e´y2{2
“

1

2π
e´px2`y2q{2

The joint pdf of pU, V q is

fUV pu, vq “
1

2π
e´rpu cos θ`v sin θq2`p´u sin θ`v cos θq2s{2

¨ |1|

“
1

2π
e´pu2`v2q{2

“
1

?
2π

e´u2{2
¨

1
?
2π

e´v2{2

so U „ Np0, 1q, V „ Np0, 1q, and U and V are independent.

Functions of independent random variables (Theorem 4.3.5) Let X and Y be independent
rvs. Let g : R Ñ R and h : R Ñ R be functions. Then the random variables U “ gpXq and
V “ hpY q are independent.

Sum of two independent rvs Suppose X and Y are independent. What is the distribution
of Z “ X ` Y ? In general:

FZpzq “ PrpX ` Y ď zq “ Prptpx, yq such that x ` y ď zuq

Various approaches:

• bivariate transformation method (continuous and discrete)

• Discrete convolution

fZpzq “
ÿ

x`y“z

fXpxqfY pyq “
ÿ

x

fXpxqfY pz ´ xq

• Continuous convolution (Section 5.2)

• MGF method (continuous and discrete)

Example (Sum of two independent Poissons) Define X, Y to be two independent random
variables having Poisson distributions with parameters λi, i “ 1, 2. Then:

fX,Y px, yq “
e´λ1λx

1

x!

e´λ2λy
2

y!
, x, y “ 0, 1, 2, . . .
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The distribution of S “ X ` Y is

fSpsq “

s
ÿ

x“0

e´λ1λx
1

x!

e´λ2λs´x
2

ps ´ xq!

“
e´pλ1`λ2q

s!

s
ÿ

x“0

ˆ

s

x

˙

λx
1λ

s´x
2

“
e´pλ1`λ2q

s!
pλ1 ` λ2q

s

Again, S is Poisson with parameter λ “ λ1 ` λ2.

Moment generating function (Theorem 4.2.12) Let X and Y be independent rvs with mgfs
MXp¨q and MY p¨q, respectively. Then the mgf of Z “ X ` Y is

MZptq “ MXptqMY ptq

Proof:

MZptq “ E exppZtq “ Etexp rpX ` Y qtsu
“ ErexppXtq exppY tqs “ ErexppXtqs ¨ ErexppY tqs

“ MXptqMY ptq

Corollary: If X and Y are independent and Z “ X ´ Y ,

MZptq “ MXptqMY p´tq

Example (sum of two independent Poissons) SupposeX „ PoissonpλXq and Y „ PoissonpλY q

and put Z “ X ` Y . Then, Z „ PoissonpλX ` λY q. Proof:

MZptq “ exp
“

λXpet ´ 1q
‰

exp
“

λY pet ´ 1q
‰

“ exp
“

pλX ` λY qpet ´ 1q
‰

Example (sum of two independent normals) Suppose X „ Npµx, σ
2
xq and Y „ Npµy, σ

2
yq

and X and Y are independent and Z “ X ` Y . Then

Z „ Npµx ` µy, σ
2
x ` σ2

yq

Proof:

MZptq “ exp

ˆ

µxt `
1

2
σ2
xt

2

˙

exp

ˆ

µyt `
1

2
σ2
yt

2

˙

“ exp

„

pµx ` µyqt `
1

2
pσ2

x ` σ2
yqt2

ȷ
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Example (sum of two independent gammas) Suppose X „ Γpαx, βq and independently
Y „ Γpαy, βq. Let Z “ X ` Y . Then Z „ Γppαx ` αyq, βq.
Proof:

MZptq “

ˆ

1

1 ´ βt

˙αx
ˆ

1

1 ´ βt

˙αy

“

ˆ

1

1 ´ βt

˙αx`αy

Remember that

• If α “ 1 we have an exponential with parameter β.

• If α “ n{2 and β “ 2, we have a χ2pnq (with n d.f.). The above result states that
χ2pn1q ` χ2pn2q “ χ2pn1 ` n2q.

Covariance and Correlation Let X and Y be two random variables with respective means
µX , µY and variances σ2

X ą 0 and σ2
Y ą 0, all assumed to exist.

• The covariance of X and Y is

CovpX, Y q “ E rpX ´ µXqpY ´ µY qs “ σXY

• The correlation between X and Y is

CorpX, Y q “
CovpX, Y q

a

V arpXqV arpY q

also written as

ρXY “
σXY

σXσY

“ E

„ˆ

X ´ µX

σX

˙ ˆ

Y ´ µY

σY

˙ȷ

Properties Let c be a constant:

1. CovpX,Xq “ V arpXq, CorpX,Xq “ 1
2. CovpX, Y q “ CovpY,Xq, CorpX, Y q “ CorpY,Xq

3. CovpX, cq “ 0, CorpX, cq “ 0
4. CovpX, Y q “ EpXY q ´ EpXqEpY q

5. Let Xc “ X ´ µX , Yc “ Y ´ µY . Then

CovpX, Y q “ CovpXc, Ycq “ EpXcYcq

CorpX, Y q “ CorpXc, Ycq

6. Let X̃ “ pX ´ µXq{σX , Ỹ “ pY ´ µY q{σY . Then,

CorpX, Y q “ CorpX̃, Ỹ q “ CovpX̃, Ỹ q “ EpX̃Ỹ q
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Independent vs. Uncorrelated

• X and Y are called uncorrelated iff

CovpX, Y q “ 0 or equivalently ρXY “ 0

• If X and Y are independent and CovpX, Y q exists, then CovpX, Y q “ 0.

• If X and Y are uncorrelated, this does not imply that they are independent.

Example X „ U r´1, 1s, Y “ X2. Then CovpX, Y q “ 0 but X, Y are not independent.

Correlation coefficient For any random variables X and Y ,

1. ´1 ď ρXY ď 1

2. |ρXY | “ 1 if and only if Da ‰ 0 and b such that

PrpY “ aX ` bq “ 1.

if ρXY “ 1 then a ą 0, and if ρXY “ ´1, then a ă 0.

proof:
Let X̃ “ pX ´ µXq{σX , Ỹ “ pY ´ µY q{σY . Then CorpX, Y q “ EpX̃Ỹ q,

1.
0 ď EpX̃ ´ Ỹ q2 “ 1 ` 1 ´ 2EpX̃Ỹ q ñ EpX̃Ỹ q ď 1

0 ď EpX̃ ` Ỹ q2 “ 1 ` 1 ` 2EpX̃Ỹ q ñ ´1 ď EpX̃Ỹ q

2.
ρXY “ 1 ðñ PrpỸ “ X̃q “ 1 ñ a ą 0

ρXY “ ´1 ðñ PrpỸ “ ´X̃q “ 1 ñ a ă 0

Random Samples

Definition The random variables X1, . . . , Xn are called a random sample of size n from
the population fpxq if X1, . . . , Xn are mutually independent and identically distributed (iid)
random variables with the same pdf or pmf fpxq.

If X1, . . . , Xn are iid, then their joint pdf or pmf is

fpx1, . . . , xnq “ fpx1qfpx2q . . . fpxnq “

n
ź

j“1

fpxjq

Statistics Let X1, . . . , Xn be a random sample and let T px1, . . . , xnq be a function defined
on Rn. Then the random variable Y “ T pX1, . . . , Xnq is called a statistic. The probability
distribution of Y is called the sampling distribution of Y .

Note: T is only a function of px1, . . . , xnq, no parameters.
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Examples

sample mean X̄ “ 1
n

n
ř

j“1

Xj

sample variance S2 “ 1
n´1

n
ř

j“1

pXj ´ X̄q2

sample standard deviation S “
?
S2

minimum Xp1q “ min
1ďiďn

Xi

Properties Let x1, . . . , xn be n numbers and define

x̄ “
1

n

n
ÿ

j“1

xj, s2 “
1

n ´ 1

n
ÿ

j“1

pxj ´ x̄q
2

Then

min
a

n
ÿ

j“1

pxj ´ aq
2

“

n
ÿ

j“1

pxj ´ x̄q
2

pn ´ 1qs2 “

n
ÿ

j“1

pxj ´ x̄q
2

“

n
ÿ

j“1

x2
j ´ nx̄2

Residuals Lemma: Let X1, . . . , Xn be a random sample from a population with mean µ and
variance σ2. Define the residuals Ri “ Xi ´ X̄. Then

EpRiq “ 0, V arpRiq “ n´1
n
σ2

CovpRi, X̄q “ 0, CovpRi, Rjq “ ´σ2{n if i ‰ j

Theorem Let X1, . . . , Xn be a random sample from a population with mgf MXptq. Then
the mgf of the sample mean is

MX̄ptq “ rMXpt{nqs
n

Convergence

Convergence in Probability A sequence of random variables X1, . . . , Xn converges in proba-
bility to a random variable X, denoted

Xn
p

Ñ X

if for every ϵ ą 0,
lim
nÑ8

Prp|Xn ´ X| ă ϵq “ 1

or equivalently
lim
nÑ8

Prp|Xn ´ X| ą ϵq “ 0

In other words, Xn is more and more likely to be close to X, or less and less likely to be far
from X.
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Example Let Xn “ X ` ϵn, where ϵn „ Np0, 1{nq and X is an arbitrary random variable.
Then, as n Ñ 8,

Xn
p

Ñ X

Weak law of large numbers (WLLN) Let Y1, . . . , Yn be iid with common mean µ and variance
σ2. Then, as n Ñ 8,

Ȳn “
1

n

ÿ

j“1

Yj
p

Ñ µ

Proof:
The proof is quite simple, being a straightforward application of Chebychev’s Inequality. We
have, for every ϵ ą 0,

Prp|Ȳn ´ µ| ě ϵq “ Prp|Ȳn ´ µ|
2

ě ϵ2q ď
EpȲ ´ µq2

ϵ2
“

V arpȲ q

ϵ2
“

σ2

nϵ2
Ñ 0 as n Ñ 8

Convergence in Distribution A sequence of random variables X1, . . . , Xn converges in distri-
bution to a random variable X, denoted

XN
d

Ñ X

if
lim
nÑ8

FXnpxq “ FXpxq

This is also called convergence in law or weak convergence. In other words, the distribution
of Xn is closer and closer to the distribution of X.

Relation between “in distribution” and “in probability” Theorem:

1. Convergence in probability implies convergence in distribution:

Xn
p

Ñ X ñ Xn
d

Ñ X

2. Suppose Xn
d

Ñ X where X has a degenerate distribution, i.e. PrtX “ au “ 1 for some
a P R. Then,

Xn
d

Ñ a ñ Xn
p

Ñ a

Convergence in Distribution via Convergence of Mgfs Theorem: Suppose the mgf Mnptq of Yn

exists for |t| ă h, and the mgf Mptq of Y exists for |t| ă h1 ă h. Then,

Yn
d

Ñ Y ðñ lim
nÑ8

Mnptq “ Mptq, |t| ă h1

Example Let Xλ „ Poissonpλq. Then, as λ Ñ 8,

Xλ ´ λ

λ

p
Ñ 0

Xλ ´ λ
?
λ

d
Ñ Np0, 1q
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Central Limit Theorem Let X1, X2, . . . , Xn be a sequence of iid random variables whose mgfs
exist in a neighborhood of 0 (that is, MXi

ptq exists for |t| ă h, for some positive h ą 0). Let
EXi “ µ and V arpXiq “ σ2 ą 0. (Both µ and σ2 are finite since the mgf exists) Define

X̄n “ 1
n

n
ř

i“1

Xi. Let Gnpxq denote the cdf of
?
npX̄n ´ µq{σ. Then, for any x, ´8 ă x ă 8,

lim
nÑ8

Gnpxq “

ż x

´8

1
?
2π

e´y2{2dy;

that is,
?
npX̄n ´µq{σ has a limiting standard normal distribution, in other words,

?
npX̄n ´

µq{σ
d

Ñ Np0, 1q

Proof:
Define Yi “ pXi ´ µq{σ, and let MY ptq denote the common mgf of Yis, which exists for
|t| ă σh and MY ptq “ M 1

σ
Xi´µ{σptq “ e´

µ
σ
tMXp t

σ
q. Since

?
npX̄n ´ µq

σ
“

1
?
n

n
ÿ

i“1

Yi,

we have,
M?

npX̄n´µq{σptq “ M n
ř

i“1
Yi{

?
n
ptq

“ M n
ř

i“1
Yi

pt{
?
nq

“
“

MY pt{
?
nq

‰n
.

We now expand MY pt{
?
nq in a Taylor series (power series) around 0.

MY p
t

?
n

q “

8
ÿ

k“0

M
pkq

Y p0q
pt{

?
nqk

k!
,

where M
pkq

Y p0q “ pdk{dtkqMY ptq|t“0. Since the mgfs exist for |t| ă h, the power series
expansion is valid if t ă

?
nσh.

Using the facts that M
p0q

Y “ 1, M
p1q

Y “ 0, and M
p2q

Y “ 1 (by construction, the mean and
variance of Y are 0 and 1), we have

MY p
t

?
n

q “ 1 `
pt{

?
nq2

2!
` RY p

t
?
n

q,

where RY is the remainder term in the Taylor expansion such that

lim
nÑ8

RY pt{
?
nq

pt{
?
nq2

“ 0.

Therefore, for any fixed t, we can write

lim
nÑ8

„

MY p
t

?
n

q

ȷn

“ lim
nÑ8

„

1 `
pt{

?
nq2

2!
` RY p

t
?
n

q

ȷn

“ lim
nÑ8

„

1 `
1

n

ˆ

t2

2
` nRY p

t
?
n

q

˙ȷn

“ et
2{2
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