Lecture 37: Dec 4

Last time

e Expectation

Today
e Course Evaluations (9/33)

e Transformations

Bivariate Transformation

Functions of random variables Let (X,Y’) be a bivariate rv with known distributions. Define
(U, V) by
U=g(X,Y), V=g(XY)

Probability mapping For any Borel set B < R?,
Pr[(U,V)e B] =Pr[(X,Y) € A]
where A is the inverse mapping of B, such that

A= {(z,y) e R*: (q1(,y), 92(,y)) € B}.

The inverse is well defined even if the mapping is not bijective.
Example Let gi(z,y) = z, ga(z,y) = 2 + y°.

Discrete RVs Suppose that (X,Y) is a discrete rv, i.e., the pmf is positive on a countable
set A. Then (U, V) is also discrete and takes values on a countable set B. Define
Auw = {(z,9) € A= 01(2,y) = u, g2(x,y) = v}

Then
fov(u,o) =Pr(U =u,V =v) = > fxy(zy)

(wyy)eAu,v

Sum of two independent Poissons Let X ~ Poisson(A\), Y ~ Poisson()s), independent,
and define
U=X+Y, V=Y

e (X,Y) takes values in A = {0,1,2,...} x {0,1,2,...}
e (U,V) takes values on B = {(u,v) : v =10,1,2,...,u=v, 0+ 1,0 +2,...}.

e For a particular (u,v), Ay, = {(z,y) e Az +y=u,y =v} = (u—v,u).



The joint pmf of U and V is
e MYV e A2 )Y

fov(u,v) = fxy(u—v,v) = (u—0) (v)!

The distribution of U = X + Y is the marginal

e —AW
Jo(u) = Z

= (u—v) (v)!

—(A1+Xx2) U
€ u U—v\v
Y Z <U> ATTA

v=0
6*()\1+)\2)

- TO\I + Ag)*

We obtain that U is Poisson with parameter A = Ay + Ao.

Bivariate Transformations of Continuous RVs Suppose (X,Y) is continuous and the joint
transformation

u:gl(‘ruy>7 UZQ?(xvy)
is one-to-one and differentiable. Define the inverse mapping

xr = hl(U,'U), Yy = h?(“a U)

Then
fov(u,v) = fxy (hi(u,v), ha(u,v)) | (u, v)]|

where J(u,v) is the Jacobian of the transformation (z,y) — (u,v) given by

Jwv) =50 = l gzg é—_g ]

Example: Rotation of a bivariate normal vector Let X ~ N(0,1), Y ~ N(0, 1), independent.
Define the rotation

U= Xcosf —Ysinf
V = Xsinf + Y cosé
for fixed . Then U ~ N(0,1), V' ~ N(0,1), independent.
Proof:
The range of (X,Y) is R% The range of (U, V) is R?. Need the inverse transformation

X =UcosO + Vsind
Y = —Usinf + V cost

o o .
J(U,U)zlg_z _g]:l cos ¢ sm@]
ou

5 —sinf cos®
()

with Jacobian
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and its determinant is
The joint pdf of (X,Y) is

o) = e e T

The joint pdf of (U, V) is

ief[(ucos9+vsin9)2+(7usin9+vcos€)2]/2 . |1|
2m
ief(u2+v2)/2 o 1 7u2/2 . 1 7v2/2

27 V21 V2w
soU ~ N(0,1), V ~ N(0,1), and U and V are independent.

fov (u,v)

Functions of independent random variables (Theorem 4.3.5) Let X and Y be independent
rvs. Let g : R — R and h : R — R be functions. Then the random variables U = g(X) and
V' = h(Y') are independent.

Sum of two independent rvs Suppose X and Y are independent. What is the distribution
of Z =X + Y7 In general:

Fz(z) =Pr(X +Y < z) =Pr({(z,y) such that x + y < z})

Various approaches:

bivariate transformation method (continuous and discrete)

Discrete convolution

Z Ix(z ZfX ) fy(z — )

r+y=z

Continuous convolution (Section 5.2)

MGF method (continuous and discrete)
Example (Sum of two independent Poissons) Define X, Y to be two independent random
variables having Poisson distributions with parameters \;, ¢ = 1,2. Then:

e MM ez )Y ry =012

fX,Y(may) = 7! y|



The distribution of S = X +Y is

Sy e MAT em R\

fsls) = x! (s —ax)!

=0
e—(>\1 +X2) S (8

s!

NAT
=0 l’)
e—(A1+X2)

= T()\l + A2)®

Again, S is Poisson with parameter A = A; + As.

Moment generating function (Theorem 4.2.12) Let X and Y be independent rvs with mgfs
Mx () and My (-), respectively. Then the mgf of Z = X + Y is

My (t) = My (t) My (t)

Proof:
My(t) = Fexp(Zt) = E{exp [(X + Y)t]}
= Elexp(Xt)exp(Yt)] = Elexp(Xt)]- Elexp(Yt)]
= Mx(t)My(t)

Corollary: If X and Y are independent and Z = X — Y,

My (t) = My (t) My (—t)

Example (sum of two independent Poissons) Suppose X ~ Poisson(Ax) and Y ~ Poisson(\y)
and put Z = X + Y. Then, Z ~ Poisson(Ax + Ay). Proof:
Mz (t) = exp [Ax(e" — 1)] exp [Ay (' — 1)]
= exp [()\X + )\y)(et — 1)]

Example (sum of two independent normals) Suppose X ~ N(p,,02) and Y ~ N(u,,0;)
and X and Y are independent and Z = X + Y. Then

Z ~ N(pig + py, 02 + 0,

Proof:

1 1
My(t) = exp (,uxt + §a§t2) exp (uyt + §a§t2)

1
— exp l(ﬂm + iy )t + 5(02 + aj)ﬁ]



Example (sum of two independent gammas) Suppose X ~ T'(ay, ) and independently
Y ~ (e, B). Let Z=X+Y. Then Z ~ I'((ay + o), B).

Proof:
1T\ / 1 \%
Mzt = <1—Bt> (1—&)

B 1 Qg +oy
(=)

e If @ =1 we have an exponential with parameter (.

Remember that

o If « = n/2 and 8 = 2, we have a x*(n) (with n d.f.). The above result states that
X2 (n1) + X3 (n2) = X*(n1 + na).

Covariance and Correlation Let X and Y be two random variables with respective means
px, iy and variances 0% > 0 and 0% > 0, all assumed to exist.

e The covariance of X and Y is

Cov(X,Y) = E[(X — px)(Y — py)] = oxy

e The correlation between X and Y is

Cov(X,Y)
\/Var(X)Var(Y)

oxy [(X—,UX) (Y—NY)]
PXy = =F
O0x0y ox Oy

Properties Let ¢ be a constant:

Cor(X,Y) =

also written as

1. Cov(X,X) = Var(X), Cor(X,X) =

2. Cow(X,Y)=_Cou(Y,X), Cor(X,Y) = Cor(Y,X)
3. Cov(X,c)=0, Cor(X,c) =0

4. Cov(X,Y) = E(XY) — E(X)E(Y)

5 Let X, =X —pux, Y. =Y — uy. Then

Cov(X,Y) =Cov(X,Y.) = E(X.Y.)
Cor(X,Y) = Cor(X.,Y.)

6. Let X = (X — pux)/ox, Y = (Y — py)/oy. Then,

Cor(X,Y) = Cor(X,Y) = Cou(X,Y) = E(XY)



Independent vs. Uncorrelated

e X and Y are called uncorrelated iff

Cov(X,Y) =0 orequivalently pxy =0

e If X and Y are independent and Cov(X,Y") exists, then Cov(X,Y) = 0.
e If X and Y are uncorrelated, this does not imply that they are independent.

Example X ~ U[-1,1], Y = X2 Then Cov(X,Y) =0 but X,Y are not independent.

Correlation coefficient For any random variables X and Y,
1. -1 <pxy <1
2. |pxy| = 1if and only if Ja # 0 and b such that
Pr(Y =aX +0) = 1.
if pxy = 1 then a > 0, and if pxy = —1, then a < 0.

proof: . o
Let X = (X —ux)/ox, Y = (Y —py)/oy. Then Cor(X,Y) = E(XY),

1.

0<SEX-Y)?=1+1-2EXY) = EXY)<l1
0SEX+Y)? =1+1+2E(XY) = —-1<E(XY)
2. - .
pr=1<:>Pr(Y:X):1 = a>0
pxy =—1 <= PrY =-X)=1 = a<0
Random Samples
Definition The random variables Xi,...,X,, are called a random sample of size n from

the population f(x) if X1,..., X, are mutually independent and identically distributed (iid)
random variables with the same pdf or pmf f(x).

If Xq,...,X, areiid, then their joint pdf or pmf is

fn, o) = fle) fs) .- flxn) = | | fl2))

=1

Statistics Let Xj,..., X, be a random sample and let T'(z1,...,x,) be a function defined
on R™. Then the random variable Y = T(Xy,..., X,,) is called a statistic. The probability
distribution of Y is called the sampling distribution of Y.

Note: T is only a function of (zy,...,z,), no parameters.
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Examples

sample mean X = X;

S |-

1

sample variance S? = - 3 (X; — X)?
=

<
Il

j
sample standard deviation S = /52

minimum Xy = min Xj
1<i<n
Properties Let x1,...,2, be n numbers and define
RS 2 1 2
T=—>u 5% = r;— T
n 7 n—1 Z( i %)
j=1 J=1
Then .
2 —\2
mamZ(xj —a) = Z(xj — )
j=1 j=1
n n
(n—1)s* = Z(mJ —I)? = Zx? —nz?
j=1 j=1
Residuals Lemma: Let Xi,..., X, be a random sample from a population with mean p and

variance o2. Define the residuals R; = X; — X. Then

E(Rz) = 0, VCLT(R,L) = ﬂ02

n

Cov(R;, X) =0, Cov(R;,Rj) =—0c*/nifi+#j

Theorem Let Xi,...,X, be a random sample from a population with mgf Mx(¢). Then
the mgf of the sample mean is

M (t) = [Mx(t/n)]"

Convergence

Convergence in Probability A sequence of random variables Xy, ..., X, converges in proba-
bility to a random variable X, denoted

X, 5 X

if for every € > 0,
lim Pr(|X, — X| <¢) =1
n—0o0

or equivalently
lim Pr(| X, — X|>¢€) =0
n—a0

In other words, X, is more and more likely to be close to X, or less and less likely to be far
from X.



Example Let X, = X + ¢,, where ¢, ~ N(0,1/n) and X is an arbitrary random variable.
Then, as n — o0,

X, 5 X

Weak law of large numbers (WLLN) Let Y;,..., Y, beiid with common mean p and variance
0?. Then, as n — o,

j=1

Proof:

The proof is quite simple, being a straightforward application of Chebychev’s Inequality. We
have, for every € > 0,

E(Y —p)? Var(yY) o?

Pr(|Y, —p| =€) = Pr(|Y, — u|* = ) < 5 > =-— —~0asn—>w

€ € ne
Convergence in Distribution A sequence of random variables X, ..., X,, converges in distri-
bution to a random variable X, denoted
d
XN i X

if
lim Fy, (z) = Fx(z)

n—00
This is also called convergence in law or weak convergence. In other words, the distribution
of X, is closer and closer to the distribution of X.

Relation between “in distribution” and “in probability” Theorem:

1. Convergence in probability implies convergence in distribution:

X, Ax=Xx,%X

2. Suppose X, % X where X has a degenerate distribution, i.e. Pr{X = a} = 1 for some
a € R. Then,

d P
X,—a= X, >a

Convergence in Distribution via Convergence of Mgfs Theorem: Suppose the mgf M, (t) of Y,,
exists for |t| < h, and the mgf M (t) of Y exists for |[t| < hy < h. Then,

Y, 5Y < lim M,(t) = M(t), [|t|<h

n—0o0

Example Let X, ~ Poisson(\). Then, as A — o,
Xy—A

A
Xa—A

20

<4 N(0,1)

=



Central Limit Theorem Let X7, X5, ..., X,, be a sequence of iid random variables whose mgfs
exist in a neighborhood of 0 (that is, My, (t) exists for |t| < h, for some positive h > 0). Let
EX; = p and Var(X;) = 0 > 0. (Both p and o? are finite since the mgf exists) Define

X, =2 > X;. Let G,,(x) denote the cdf of /n(X,, — p)/o. Then, for any z, —00 < z < o0,
=1

lim G, (z) = J:O

n—0o0

eV dy;

2m
that is, v/n(X, — i) /o has a limiting standard normal distribution, in other words, 1/n(X, —
d
p)/o = N(0,1)
Proof:

Define Y; = (X; — p)/o, and let My (t) denote the common mgf of Y;s, which exists for
|t < oh and My (t) = My, _, () = e"s"Mx(L). Since

o \/ﬁ = (2
we have,

M (%o (t) = M g yiyuit)
=1

=M, (t/Vn)
7,:1
= [My(t/vn)]".
We now expand My (t/4/n) in a Taylor series (power series) around 0.

Z Moy U

Y

where M,(,k)(()) = (dk/dtk)My(t)|t:0. Since the mgfs exist for |[t| < h, the power series
expansion is valid if ¢ < y/noh.

Using the facts that Mx(/) =1, M = 0, and My (2) 1 (by construction, the mean and
variance of Y are 0 and 1), we have

t (t/y/n)?
My(—) =1+ +R
Y(\/ﬁ ) 2! Y(\/ﬁ )
where Ry is the remainder term in the Taylor expansion such that
L Ry(t/y)
N ONDE
Therefore, for any fixed ¢, we can write

t [ [ = o |1 S5 e

1 /t? t "
= 1li 1+ —(— Ry (—
fig |1 (G o )
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